In this paper we prove a kind of rotational symmetry for solutions of semilinear elliptic systems in some bounded cylindrical domains. The symmetry theorems obtained hold for low-Morse index solutions whenever the nonlinearities satisfy some convexity assumptions. These results extend and improve those obtained in [6, 9, 16, 18].

Sectional symmetry of solutions of elliptic systems in cylindrical domains / Damascelli, L.; Pacella, F.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 40:6(2020), pp. 3305-3325. [10.3934/dcds.2020045]

Sectional symmetry of solutions of elliptic systems in cylindrical domains

Pacella F.
2020

Abstract

In this paper we prove a kind of rotational symmetry for solutions of semilinear elliptic systems in some bounded cylindrical domains. The symmetry theorems obtained hold for low-Morse index solutions whenever the nonlinearities satisfy some convexity assumptions. These results extend and improve those obtained in [6, 9, 16, 18].
2020
Foliated Schwarz symmetry; maximum principle; Morse index
01 Pubblicazione su rivista::01a Articolo in rivista
Sectional symmetry of solutions of elliptic systems in cylindrical domains / Damascelli, L.; Pacella, F.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 40:6(2020), pp. 3305-3325. [10.3934/dcds.2020045]
File allegati a questo prodotto
File Dimensione Formato  
Damascelli_preprint_Sectional-symmetry_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 301.9 kB
Formato Adobe PDF
301.9 kB Adobe PDF
Damascelli_Sectional-symmetry_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 308.52 kB
Formato Adobe PDF
308.52 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1464233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact