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SECTIONAL SYMMETRY OF SOLUTIONS OF

ELLIPTIC SYSTEMS IN CYLINDRICAL DOMAINS

LUCIO DAMASCELLI AND FILOMENA PACELLA

Abstract. In this paper we prove a kind of rotational symme-
try for solutions of semilinear elliptic systems in some bounded
cylindrical domains. The symmetry theorems obtained hold for
low-Morse index solutions whenever the nonlinearities satisfy some
convexity assumptions. These results extend and improve those
obtained in [6, 9, 16, 18].

1. Introduction

We consider the Dirichlet problem for a semilinear elliptic system of
the type

(1.1)

{

−∆U = F (x, U) in Ω

U = 0 on ∂Ω

where Ω is a smooth bounded domain in R
N , N ≥ 2 and F = (f1, . . . , fm)

is a function belonging to C1(Ω×R
m;Rm),m ≥ 1. Here U = (u1, . . . , um)

is a vector valued function.
When m = 1, i.e. the equation in (1.1) is a scalar semilinear elliptic

equation, the famous symmetry result by B. Gidas, W.M. Ni and L.
Nirenberg [14], based on the moving planes method, asserts that if Ω
is a ball then every positive solution of (1.1) is radial if the nonlinear
term f = f(|x|, u) is monotone decreasing with respect to r = |x|. The
result of [14] was then extended to systems in [22], [11], [12].

It is well known that the radial symmetry of a solution does not hold,
in general, when Ω is an annulus or if sign changing solutions are con-
sidered and even if f does not have the right monotonicity with respect
to |x| (see for example [17]). Nevertheless when the hypotheses of the
theorem of Gidas, Ni and Nirenberg fail another kind of symmetry can
be recovered, namely the foliated Schwarz symmetry for solutions of
(1.1) in a ball or in annulus having low Morse index and assuming that
the nonlinear term has some convexity properties in the U -variable.
We refer to Section 2 for the definition of Morse index.
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A symmetry result of this type was first proved in [16] in the case
m = 1 for solutions having Morse index one and assuming that the
nonlinearity f = f(|x|, s) is convex in the second variable. Later it was
extended in [18] to solutions having Morse index not larger than the
dimension N and assuming that the derivative ∂f

∂s
is a convex function

in the s-variable. Finally in [6] and [9] the foliated Schwarz symmetry
was proved for low Morse index solutions of cooperative elliptic sys-
tems, i.e. when m ≥ 2. Let us point out that the extension of the
results in [16] and [18] to systems is nontrivial. Indeed the results of
[6] could not be proved for any convex nonlinearity F = F (|x|, U) but
some additional hypotheses were required.

In this paper we extend the above results by considering more general
symmetric domains and not just balls or annulus. As a consequence
we will get less symmetry of the solutions, depending also on a tighter
bound on their Morse index. Moreover we are able to improve the
results in [6] by allowing any convex nonlinearity in (1.1).

To state precisely our results we need some preliminary definitions.
The first one concerns the domains we consider.

Let N ≥ 2 and 2 ≤ k ≤ N . If k < N , let us denote by x = (x′, x′′)
a point in R

N , with x′ ∈ R
k, x′′ ∈ R

N−k, and for a bounded domain Ω
let us denote by Ω′′ the set

Ω′′ = {x′′ ∈ R
N−k : ∃ x′ ∈ R

k : (x′, x′′) ∈ Ω}

We will consider domains of the following type.

DEFINITION 1.1. Assume that N ≥ 2, 2 ≤ k ≤ N . We say that a
bounded domain Ω in R

N , is k-rotationally symmetric if either k = N

and Ω is a ball or an annulus, or 2 ≤ k < N and the sets

Ωh = Ω ∩ {x = (x′, x′′) ∈ R
N : x′′ = h}

are either k-dimensional balls or k-dimensional annulus with the center
on (0, h) for every h ∈ Ω′′.

In other words we require that the set Ωh, which represents a section
of Ω at the level x′′ = h is either a ball or an annulus in dimension k.

The symmetry we will get for solutions of (1.1) when Ω is k-rotationally
symmetric is a variant of the foliated Schwarz symmetry considered in
several previous paper (see [1], [6], [9], [10], [15], [16], [18], [20], [23]
and the references therein).

We will call it k-sectional foliated Schwarz symmetry.

DEFINITION 1.2. Let Ω be a bounded k-rotationally symmetric
domain in R

N , 2 ≤ k ≤ N , and let U : Ω → R
m a continuous function.

We say that U is k-sectionally foliated Schwarz symmetric if there exists
a vector p′ = (p1, . . . , pk, 0, . . . , 0) ∈ R

N , |p′| = 1, such that U(x) =
U(x′, x′′) depends only on x′′, r = |x′| and ϑ = arccos( x′

|x′|
· p′) and U is

nonincreasing in ϑ.
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When k = N the previous definition coincides with that of foli-
ated Schwarz symmetry. Definition 1.2 just means that the functions
x′ 7→ U(x′, h) defined in Ωh are either radial for any h ∈ Ω′′, or nonra-
dial but foliated Schwarz symmetric for any h ∈ Ω′′, with the same axis
of symmetry. In the case k = N−1 the sectional foliated Schwarz sym-
metry was defined in [7] to study some elliptic problems with nonlinear
mixed boundary conditions.

In order to prove symmetry of solutions we also need some sym-
metry on the nonlinearity. Therefore from now on we assume that Ω
is a smooth bounded k-rotationally symmetric domain in R

N and we
rewrite the system (1.1) as

(1.2)

{

−∆U = F (|x′|, x′′, U) in Ω

U = 0 on ∂Ω

i.e. we require that F depends radially on x′. As in (1.1) F =
F (r, x′′, S) = (f1(r, x

′′, S), . . . , fm(r, x
′′, S)) satisfies

(1.3) F ∈ C1([0,+∞)× Ω′′ × R
m;Rm)

The symmetry results we get are the following (the definition of
Morse index and fully coupled systems will be recalled in Section 2).

THEOREM 1.1. Let Ω be a k-rotationally symmetric domain in R
N ,

2 ≤ k ≤ N , and let U ∈ C2(Ω;Rm) be a solution of (1.2) with F

satisfying (1.3). Assume that

i) the system (1.2) is fully coupled along U in Ω
ii) for any i = 1, . . .m the scalar function fi(|x

′|, x′′, S) is convex
in the variable S = (s1, . . . , sm) ∈ R

m.

If m(U) ≤ k, where m(U) is the Morse index of U , then U is k-
sectional foliated Schwarz symmetric, and if the functions x′ 7→ U(x′, h),
h ∈ Ω′′, are not radial then they are strictly decreasing in the angular
variable.

This theorem not only extends the results in [6] to k-rotationally
symmetric domains but also improves the result of [6] for the case
k = N since it only requires that the components fi of the nonlinearity
are convex without further assumptions.

The next theorem concerns the case when the nonlinearity has convex
first derivatives.

THEOREM 1.2. Let Ω be a k-rotationally symmetric in R
N , 2 ≤

k ≤ N , and let U ∈ C2(Ω;Rm) be a solution of (1.2). Assume that:

i) the system (1.2) is fully coupled along U in Ω
ii) for any i, j = 1, . . .m the function ∂fi

∂sj
(|x′|, x′′, S) is convex in

S = (s1, . . . , sm).
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If m(U) ≤ k − 1 then a solution U is k-sectionally foliated Schwarz
symmetric and if the functions x′ 7→ U(x′, h), h ∈ Ω′′, are not radial
then they are strictly decreasing in the angular variable.

The previous theorem extends to k-rotationally symmetric domains
the result in [9] and we provide a different proof which also simplify
the one given in [9]. Note that in Theorem 1.2 the bound on the
Morse index m(U) ≤ k − 1 is stricter than in Theorem 1.1. When
m = 1, i.e. in the scalar case, it is possible to improve it to m(U) ≤ k

(adapting the proof in [18] for k = N). However in the vectorial case
serious difficulties arise when m(U) = k, which prevent to use the same
approach, though we believe that the symmetry result should be true
also in this case.

It is interesting to see in the previous theorems how the Morse index
of a solution is related to the ”dimension” of the sectional symmetry
of the domain.

Remark 1.1. In the particular case of stable solutions (see Section
2 for the definition) we get the radial symmetry on each section Ωh

without requiring any convexity on F . This can be proved easily as in
the proof of Theorem 1.5 of [15].

We will deduce from the proof of Theorem 1.1 and Theorem 1.2 that
for nonradial Morse index one solutions the following condition holds.

COROLLARY 1.1. Under the assumptions of Theorem 1.1 or The-
orem 1.2 if a solution U has Morse index one and is not radial then
(1.4)
m
∑

j=1

∂fi

∂sj
(r, x′′, U(r, ϑ))

∂uj

∂ϑ
(r, x′′, ϑ) =

m
∑

j=1

∂fj

∂si
(r, x′′, U(r, ϑ))

∂uj

∂ϑ
(r, x′′, ϑ)

for any i = 1, . . . , m, with (r, ϑ) as in Definition 1.2.
In particular if m = 2 then (1.4) implies that

(1.5)
∂f1

∂s2
(|x′|, x′′, U(x)) =

∂f2

∂s1
(|x′|, x′′, U(x)) , ∀ x ∈ Ω

Remark 1.2. Under the assumptions of Theorem 1.2, the conditions
(1.4) and (1.5) hold more generally for solutions having Morse index

m(U) ≤ k − 1 if for some i0, j0 ∈ {1, . . . , m} the function
∂fi0
∂sj0

(|x|, S)

satisfies a strict convexity assumption as in Theorem 1.3 in [9].

The paper is organized as follows.
In Section 2 we recall suitable versions of weak and strong maximum

principles as well as comparison principles for systems. Moreover we
state some results from the spectral theory for an eigenvalue problem
related to a symmetrized version of the system (1.1). Finally we define
the Morse index. In Section 3 we give some sufficient conditions for k-
sectional foliated Schwarz symmetry and prove Theorem 1.1, Theorem
1.2 and Corollary 1.1.
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2. Preliminaries

2.1. Spectral theory for linear elliptic systems.

Let Ω be a bounded domain in R
N , N ≥ 2, and D a m × m matrix

with bounded entries:

(2.1) D = (dij)
m

i,j=1 , dij ∈ L∞(Ω)

We consider the linear elliptic system

(2.2)

{

−∆U +D(x)U = F in Ω

U = 0 on ∂Ω

i.e.



















−∆u1 + d11u1 + · · ·+ d1mum = f1 in Ω

. . . . . . . . .

−∆um + dm1u1 + · · ·+ dmmum = fm in Ω

u1 = · · · = um = 0 on ∂Ω

where F = (f1, . . . , fm) ∈ (L2(Ω))m, U = (U1, . . . , Um).

DEFINITION 2.1. The matrix D or the associated system (2.2) is
said to be

• cooperative or weakly coupled in Ω if

(2.3) dij ≤ 0 a.e. in Ω, whenever i 6= j

• fully coupled in Ω if it is weakly coupled in Ω and the following
condition holds:

∀ I, J ⊂ {1, . . . , m} , I, J 6= ∅ , I ∩ J = ∅ , I ∪ J = {1, . . . , m}

∃i0 ∈ I , j0 ∈ J : meas ({x ∈ Ω : di0j0 < 0}) > 0
(2.4)

Before going on we fix some notations and definitions.

• Inequalities involving vectors should be understood to hold com-
ponentwise, e.g. if Ψ = (ψ1, . . . , ψm), Ψ nonnegative means that
ψj ≥ 0 for any index j = 1, . . . , m.

• If m ≥ 2 and 1 ≤ p ≤ ∞ we will consider the Banach spaces

Lp(Ω) = (Lp(Ω))m , W1,p(Ω) =
(

W 1,p(Ω)
)m

If p = 2 in particular we have the Hilbert spaces

L2(Ω) =
(

L2(Ω)
)m

, H1(Ω) =
(

H1(Ω)
)m

and the space H1
0(Ω) = (H1

0 (Ω))
m
, i.e. the closure in H1(Ω) of

the subspace C1
c (Ω;R

m). If f = (f1, . . . , fm), g = (g1, . . . , gm),
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the related scalar products are

(f, g)
L
2(Ω) =

m
∑

i=1

(fi, gi)L2(Ω) =

m
∑

i=1

∫

Ω

fi gi dx

(f, g)H1
0(Ω) =

m
∑

i=1

(fi, gi)H1
0 (Ω) =

m
∑

i=1

∫

Ω

∇fi · ∇gi dx

(2.5)

• If U = (u1, . . . , um) , Ψ = (ψ1, . . . , ψm) ∈ H1
0(Ω), and the ma-

trix D satisfies (2.1) we set

(2.6) ∇U · ∇Ψ =
m
∑

i=1

∇ui · ∇ψi

(2.7) D(x)(U,Ψ) =

m
∑

i,j=1

dij(x)uiψj

B(U,Ψ) = BD(U,Ψ) =

∫

Ω

[∇U · ∇Ψ+D(U,Ψ)] dx

=

∫

Ω

[

m
∑

i=1

∇ui · ∇ψi +

m
∑

i,j=1

dijuiψj

]

dx

(2.8)

i.e. D(x)(U,Ψ) is the action of the bilinear form associated to
the matrix D on the pair (U,Ψ), and B is the bilinear form in
H1

0(Ω) associated to the operator −∆+D.
• If U = (u1, . . . , um) ∈ H1(Ω) we say that U weakly satisfies

U ≤ 0 on ∂Ω ( U ≥ 0 on ∂Ω )

if U+ ∈ H1
0(Ω) ( U− ∈ H1

0(Ω) ), i.e. if u+i ∈ H1
0 (Ω) (u−i ∈

H1
0 (Ω)) for any i = 1, . . . , m.

• If U = (u1, . . . , um) ∈ H1(Ω) and D satisfies (2.1) we say that
U weakly satisfies the inequality

(2.9) −∆U +D(x)U ≥ 0 in Ω

if
∫

Ω

∇U · ∇Ψ+D(x)(U,Ψ) =

∫

Ω

[

m
∑

i=1

∇ui · ∇ψi +
m
∑

i,j=1

dij(x)uiψj

]

dx ≥ 0

(2.10)

for any nonnegative Ψ = (ψ1, . . . , ψm) ∈ H1
0(Ω) (which is equiv-

alent to require that
∫

Ω

(

∇ui · ∇ψ +
∑m

j=1 dijuj ψ
)

dx ≥ 0 for

any ψ ∈ H1
0 (Ω) with ψ ≥ 0 and any i = 1, . . . , m).
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It is well known that either condition (2.3) or conditions (2.3) and
(2.4) together are needed in the proofs of maximum principles for sys-
tems (see [11], [13], [21] and the references therein). In particular if
both are fulfilled the strong maximum principle holds as it is stated in
the next theorem (see [8], [11], [13], [21] for the proof).

THEOREM 2.1. (Strong Maximum Principle and Hopf’s Lemma).
Suppose that (2.1) and (2.3) hold and U = (u1, . . . , um) ∈ C1(Ω;Rm)
is a weak solution of the inequalities

−∆U +D(x)U ≥ 0 in Ω and U ≥ 0 in Ω

Then:

(1) for any k ∈ {1, . . . , m} either uk ≡ 0 or uk > 0 in Ω; in the
latter case if uk ∈ C1(Ω;Rm), Ω satisfies the interior sphere
condition at P ∈ ∂Ω and uk(P ) = 0 then ∂uk

∂ν
(P ) < 0, where ν

is the unit exterior normal vector at P .
(2) if in addition (2.4) holds, then the same alternative holds for

all k = 1, . . . , m, i.e. either U ≡ 0 in Ω or U > 0 in Ω. In
the latter case if U ∈ C1(Ω;Rm), Ω satisfies the interior sphere
condition at P ∈ ∂Ω and U(P ) = 0 then ∂U

∂ν
(P ) < 0, where ν

is the unit exterior normal vector at P .

Together with the bilinear form (2.8) we consider the quadratic form

Q(Ψ) = BD(Ψ,Ψ) =

∫

Ω

(

|∇Ψ|2 +D(x)(Ψ,Ψ)
)

dx =

∫

Ω

(

m
∑

i=1

|∇ψi|
2 +

m
∑

i,j=1

dij(x)ψiψj

)

dx

(2.11)

for Ψ = (ψ1, . . . , ψm) ∈ H1
0(Ω).

Sometimes we will also write Q(Ψ; Ω) instead of Q(Ψ) specifying the
domain.
It is easy to see that this quadratic form coincides with the quadratic
form BC associated to the symmetric linear operator −∆ + C where
C = 1

2
(D +Dt) and Dt is the transpose of D, i.e.

(2.12) C = (cij), cij =
1

2
(dij + dji)

Let us observe that if the matrix D is cooperative, respectively fully
coupled, so is the associate matrix D.

Thus, let us review some results for a symmetric linear operator
−∆+ C, with C such that

(2.13) cij ∈ L∞(Ω) , cij = cji a.e. in Ω
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Let us consider the bilinear form
(2.14)

B(U,Φ) =

∫

Ω

[∇U · ∇Φ + C(U,Φ)] =

∫

Ω

[

m
∑

i=1

∇ui · ∇φi +

m
∑

i,j=1

cijuiφj

]

Using the theory of compact selfadjoint operators we get that there
exists a sequence {λj} = {λj(−∆ + C)} of eigenvalues, with −∞ <

λ1 ≤ λ2 ≤ . . . , limj→+∞ λj = +∞, and a corresponding sequence of
eigenfunctions {W j} which weakly solve the systems

(2.15)

{

−∆W j + CW j = λjW
j in Ω

W j = 0 on ∂Ω

i.e. if W j = (w1, . . . , wm)










−∆w1 + c11w1 + · · ·+ c1mwm = λjw1

. . . . . . . . .

−∆wm + cm1w1 + · · ·+ cmmwm = λjwm

Moreover by (scalar) elliptic regularity theory applied iteratively to
each equation, the eigenfunctions W j belong at least to C1(Ω;Rm) and
the eigenvalues can be given a variational formulation. We refer to [6],
[8] for the construction of the sequences λj and {W j} as well as for the
proof of the following theorem, which gives some variational properties
of eigenvalues and eigenfunctions.

THEOREM 2.2. Let Ω be a bounded domain in R
N , N ≥ 2. Suppose

that C = (cij)
m
i,j=1 satisfies (2.13), and let {λj}, {W

j} be the sequences
of eigenvalues and eigenfunctions satisfying (2.15).
Define the Rayleigh quotient

(2.16) R(V ) =
Q(V )

(V, V )
L
2(Ω)

for V ∈ H
1
0(Ω) , V 6= 0

with Q(V ) = B(V, V ) and B as in (2.14). Then the following properties
hold, where Hk denotes a k-dimensional subspace of H

1
0(Ω) and the

orthogonality conditions V⊥W k or V⊥Hk stand for the orthogonality
in L

2(Ω).

i)

λ1 = min
V ∈H1

0(Ω)
V 6=0

R(V ) = min
V ∈H1

0(Ω)
(V,V )

L2=1

Q(V )

ii) if k ≥ 2 then

λk = min
V ∈H1

0(Ω)
V 6=0

V⊥W 1,...,V⊥W k−1

R(V ) = min
V ∈H1

0(Ω)
(V,V )

L2(Ω)=1

V⊥W 1,...,V⊥W k−1

Q(V )
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= min
Hk

max
V ∈Hk
V 6=0

R(V ) = max
Hk−1

min
V⊥Hk−1

V 6=0

R(V )

iii) if W ∈ H
1
0(Ω), W 6= 0, and R(W ) = λ1, then W is an eigen-

function corresponding to λ1.
iv) if the system is fully coupled in Ω, then the first eigenfunction

does not change sign in Ω and the first eigenvalue is simple,
i.e. up to scalar multiplication there is only one eigenfunction
corresponding to the first eigenvalue.

v) if X = (C1
c (Ω))

m
and we denote by Xk a k-dimensional sub-

space of X then

λk = inf
Xk

max
v∈Xk
v 6=0

R(v)

vi) let us consider an open subset Ω′ ⊂ Ω and set λ1(Ω
′) =

λ1 (−∆+ C ; Ω′). Then

lim
meas (Ω′)→0

λ1(Ω
′) = +∞

2.2. Weak Maximum Principle for Cooperative systems.

Let us turn back to the (possibly) nonsymmetric cooperative system
(2.2) with D satisfying (2.1) and (2.3). We consider the associated

symmetric matrix C given by (2.12) and we denote by λ
(s)
j = λ

(s)
j (−∆+

D; Ω) the eigenvalues of the corresponding symmetric linear operator

−∆+ C and by W
(s)
j the corresponding eigenfunctions.

The eigenvalues λ
(s)
j will be called symmetric eigenvalues of the

(possibly nonsimmetric) operator −∆+D.
The bilinear form corresponding to the symmetric operator will be

denoted by Bs(U,Φ), i.e. Bs is as (2.14).
As already remarked, the quadratic form (2.11) corresponding to the

linear operator −∆+D coincides with that associated to the symmetric
linear operator −∆+ C.

DEFINITION 2.2. We say that the maximum principle holds for the
operator −∆ + D in an open set Ω′ ⊆ Ω if for any U ∈ H1(Ω′) such
that U ≤ 0 on ∂Ω′ (i.e. U+ ∈ H1

0(Ω
′) ) and −∆U +D(x)U ≤ 0 in Ω′

(i.e.
∫

∇U · ∇Φ +D(x)(U,Φ) ≤ 0 for any nonnnegative Φ ∈ H1
0(Ω

′) )
it holds that U ≤ 0 a.e. in Ω.

Let us denote by λ
(s)
j (Ω′), j ∈ N

+, the sequence of the symmetric
eigenvalues of the linear operator −∆ + D (i.e. the eigenvalues of
−∆+ C) in an open set Ω′ ⊆ Ω.

THEOREM 2.3. [Sufficient condition for weak maximum principle]

Under the hypothesis (2.1) and (2.3), if λ
(s)
1 (Ω′) > 0 then the maximum

principle holds for the operator −∆+D in Ω′ ⊆ Ω.
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Proof. By the variational characterization of the first eigenvalue given
in Theorem 2.2 we have

λ
(s)
1 = min V ∈H1(Ω′)

V 6=0

R(V ) > 0

so that Q(V ) = Bs(V, V ) > 0 for any V 6= 0 in H1
0(Ω

′).
Assume that U ≤ 0 on ∂Ω′ and −∆U + D(x)U ≤ 0 in Ω′. Then,
testing the equation with U+ = (u+1 , . . . , u

+
m), writing in the i-th equa-

tion uj = u+j − u−j for i 6= j, and recalling that −ciju
+
i u

−
j ≥ 0 if i 6= j,

we obtain that Bs(U+, U+) ≤ 0, which implies U+ ≡ 0 in Ω′. �

As an almost immediate consequence we get a quick proof of the
following ”classical” and ”small measure” forms of the weak maximum
principle (see [5], [13], [19], [21]).

THEOREM 2.4. Assume that (2.1) and (2.3) hold.

i) If D is a.e. nonnegative definite in Ω′ then the maximum prin-
ciple holds for −∆+D in Ω′.

ii) There exists δ > 0, depending on D, such that for any sub-
domain Ω′ ⊆ Ω the maximum principle holds for −∆ + D in
Ω′ ⊆ Ω provided |Ω′| ≤ δ.

Proof. i) If the matrix D is nonnegative definite then

Q(Ψ) = Bs(Ψ,Ψ) ≥

∫

Ω

|∇Ψ|2 > 0 for any Ψ ∈ H1
0(Ω

′) \ {0} .

Hence λ
(s)
1 (Ω′) > 0, and by Theorem 2.3 we get i).

ii) It is a consequence of Theorem 2.3 and Theorem 2.2, vi). �

Remark 2.1. Obviously the converse of Theorem 2.3 holds if D = C

i.e. if D is symmetric: if the maximum principle holds for −∆+C in Ω′

then λ
(s)
1 (Ω′) > 0. Indeed if λ

(s)
1 (Ω′) ≤ 0, since the system is cooperative

(and symmetric), there exists a corresponding nontrivial nonnegative
first eigenfunction Φ1 ≥ 0, Φ 6≡ 0, and the maximum principle does
not hold, since −∆Φ1 + C Φ1 = λ1Φ1 ≤ 0 in Ω′, Φ1 = 0 on ∂Ω′, while
Φ1 ≥ 0 and Φ1 6= 0. However the converse of Theorem 2.3 is not true for
general nonsymmetric systems, since there is an equivalence between
the validity of the maximum principle for the operator −∆+D and the
positivity of another eigenvalue, the principal eigenvalue λ̃1, (we recall

below the definition given in [3]), and the inequality λ̃1(Ω
′) ≥ λ

(s)
1 (Ω′),

which can be strict, holds.

DEFINITION 2.3. The principal eigenvalue of the operator−∆+
D in an open set Ω′ ⊆ Ω is defined as

λ̃1(Ω
′) = sup{λ ∈ R : ∃Ψ ∈ W

2,N
loc (Ω′;Rm) s.t.

Ψ > 0 , −∆Ψ+D(x)Ψ− λΨ ≥ 0 in Ω′}
(2.17)
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Let us recall some of the properties of the principal eigenvalue. We
refer to [5] for the proofs of items i) – iii), as well as for references on
the subject, and to [6], [8] for the proof of iv).

THEOREM 2.5. Assume that the matrix D is fully coupled in an
open set Ω′ ⊆ Ω, i.e. (2.4) holds. Then:

i) there exists a positive eigenfunction Ψ1 ∈ W
2,N
loc (Ω′;Rm) which

satisfies

(2.18)











− ∆Ψ1 +D(x)Ψ1 = λ̃1(Ω
′)Ψ1 in Ω′

Ψ1 > 0 in Ω′

Ψ1 = 0 on ∂Ω′

Moreover the principal eigenvalue is simple, i.e. any function
that satisfy (2.18) must be a multiple of Ψ1

ii) the maximum principle holds for the operator −∆+D in Ω′ if

and only if λ̃1(Ω
′) > 0

iii) if there exists Ψ ∈ W
2,N
loc (Ω′;Rm) such that Ψ > 0 and −∆Ψ +

D(x)Ψ ≥ 0 in Ω′, then either λ̃1(Ω
′) > 0 or λ̃1(Ω

′) = 0 and
Ψ = cΨ1 for some c > 0

iv) λ̃1(Ω
′) ≥ λ

(s)
1 (Ω′), with equality if and only if Ψ1 is also the first

eigenfunction of the symmetric operator −∆ + C in Ω′ , C =
1
2
(D + Dt). If this is the case the equality C(x)Ψ1 = D(x)Ψ1

holds and, if m = 2, this implies that d12 = d21.

2.3. Comparison principles for semilinear elliptic systems.

Let us consider a semilinear elliptic system of the type

(2.19)

{

−∆U = F (x, U) in Ω

U = 0 on ∂Ω

i.e.


















−∆u1 = f1(x, u1, . . . , um) in Ω

. . . . . . . . .

−∆um = fm(x, u1, . . . , um) in Ω

u1 = · · · = um = 0 on ∂Ω

for the unknown vector valued function U = (u1, . . . , um) : Ω → R
m,

where Ω is a bounded domain in R
N and F = (f1, . . . , fm) : Ω×R

m →
R

m is a C1 function.

A weak solution of (2.19) is a function U ∈ H1
0(Ω) such that the

function x 7→ F (x, U(x)) belongs to Lq(Ω), with q > 1 if N = 2,
q = 2N

N+2
if N ≥ 3 (note that 2N

N+2
is the conjugate exponent of the

critical Sobolev exponent 2∗ = 2N
N−2

) and

(2.20)

∫

Ω

∇U · ∇Φ dx =

∫

Ω

F (x, U) · Φ dx ∀ Φ ∈ H1
0(Ω)
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If U, V ∈ H1(Ω) we write U ≤ V on ∂Ω, if the difference U −V weakly
satisfies the inequality U − V ≤ 0 on ∂Ω, i.e. if (U − V )+ ∈ H1

0(Ω).
Moreover we say that U satisfies in a weak sense the inequality

(2.21) −∆U ≥ (≤ )F (x, U) in Ω

if for any i = 1, . . . , m the component ui of U weakly satisfies

−∆ui ≥ (≤ )fi(x, U) in Ω , i.e.

(2.22)

∫

Ω

∇ui · ∇ϕdx ≥ (≤ )

∫

Ω

fi(x, U)ϕdx

for any ϕ ∈ H1
0(Ω) with ϕ ≥ 0 in Ω. This is equivalent to require that

(2.23)

∫

Ω

∇U · ∇Φ dx ≥ (≤ )

∫

Ω

F (x, U) · Φ dx

for any Φ ∈ H1
0(Ω) with Φ ≥ 0 in Ω.

DEFINITION 2.4. We say that the system (2.19) is

• cooperative or weakly coupled in an open set Ω′ ⊆ Ω if

(2.24)
∂fi

∂sj
(x, s1, . . . , sm) ≥ 0 for every (x, s1, . . . , sm) ∈ Ω′ × R

m

and every i, j = 1, . . . , m with i 6= j.
• fully coupled in an open set Ω′ ⊆ Ω along U ∈ H1

0(Ω) ∩
C0(Ω;Rm) if it is cooperative in Ω′ and in addition ∀I, J ⊂
{1, . . . , m} such that I 6= ∅, J 6= ∅, I∩J = ∅, I∪J = {1, . . . , m}
there exist i0 ∈ I, j0 ∈ J such that

(2.25) meas ({x ∈ Ω′ :
∂fi0
∂sj0

(x, U(x)) > 0}) > 0

As a consequence of Theorem 2.4 and Theorem 2.1 the following
comparison principles hold (see [8] for the proof).

THEOREM 2.6 (Weak comparison principle in small domains for
systems). Let Ω be a domain in R

N , F : Ω× R
m → R

m a C1 function
and assume that (2.24) holds. Let A > 0 and U, V ∈ H

1(Ω) ∩ L∞(Ω)
such that

‖U‖L∞(Ω) ≤ A , ‖V ‖L∞(Ω) ≤ A

Then there exists δ > 0, depending on F and A such that the following
holds:
if Ω′ ⊆ Ω is a bounded subdomain of Ω, measN ([u > v] ∩Ω′) < δ and

(2.26)

{

−∆U ≤ F (x, U) , −∆V ≥ F (x, V ) in Ω′

U ≤ V on ∂Ω′

then U ≤ V in Ω′.
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THEOREM 2.7 (Strong Comparison Principle for systems). Let Ω be
a (bounded or unbounded) domain in R

N , and let U, V ∈ C1(Ω) weakly
satisfy

(2.27)

{

−∆U ≤ F (x, U) ; −∆v ≥ F (x, V ) in Ω

U ≤ V in Ω

where F (x, U) : Ω× R
m → R

m is a C1 function and (2.24) holds.

(1) For every i ∈ {1, . . . , m} the following holds: either ui ≡ vi in
Ω or ui < vi in Ω and, in the latter case, if ui, vi ∈ C1(Ω),
ui(x0) = vi(x0) at a point x0 ∈ ∂Ω where the interior sphere
condition is satisfied then ∂ui

∂s
(x0) <

∂vi
∂s
(x0) for any inward di-

rectional derivative.
(2) If moreover U ∈ C1(Ω;Rm) is a solution of (2.19) and the

system is fully coupled along U in Ω (i.e. also (2.25) with Ω′ =
Ω holds) then either U ≡ V in Ω or U < V in Ω (i.e. the
same alternative holds for any component ui). In the latter
case assume that U, V ∈ C1(Ω) and let x0 ∈ ∂Ω a point where
U(x0) = V (x0) and the interior sphere condition is satisfied.
Then ∂U

∂s
(x0) <

∂V
∂s
(x0) for any inward directional derivative.

2.4. Morse index of a solution.

DEFINITION 2.5.

i) Let U ∈ H1
0(Ω)∩L

∞(Ω) be a weak solution of (1.1). We say that
U is linearized stable (or has zero Morse index) if the quadratic
form

QU (Ψ; Ω) =

∫

Ω

[

|∇Ψ|2 − JF (x, U(x))(Ψ,Ψ)
]

dx =

∫

Ω

[

m
∑

i=1

|∇ψi|
2 −

m
∑

i,j=1

∂fi

∂sj
(x, U(x))ψiψj

]

dx ≥ 0

(2.28)

for any Ψ = (ψ1, . . . , ψm) ∈ C1
c (Ω;R

m) where JF (x, U(x)) is
the jacobian matrix of F (x, S) with respect to the variables
S = (s1, . . . , sm) computed at S = U(x).

ii) U has (linearized) Morse index equal to the integerm = m(U) ≥
1 if m is the maximal dimension of a subspace of C1

c (Ω;R
m)

where the quadratic form is negative definite.
iii) U has infinite (linearized) Morse index if for any integer k there

exists a k-dimensional subspace of C1
c (Ω;R

m) where the qua-
dratic form is negative definite.

The crucial, simple remark that allowed to extend some of the sym-
metry results known for equations to the case of systems in [6] and [9],
is that the quadratic form associated to the linearized operator at a
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solution U , i.e. to the linear operator

(2.29) LU(V ) = −∆V − JF (x, U)V

which in general is not selfadjoint, coincides with the quadratic form
corresponding to the selfadjoint operator

(2.30) Ls
U(V ) = −∆V −

1

2

(

JF (x, U) + J t
F (x, U)

)

V

where J t
F is the transpose of the matrix JF .

Therefore the symmetric eigenvalues of L, i.e. the eigenvalues of Ls
U ,

as defined in Section 2.2 can be exploited to study the symmetry of the
solution U , using the information on its Morse index.

As in section 2.2 we denote by λsk = λk(−∆−1
2
(JF (x, U) + J t

F (x, U)) ; Ω)

and W k, k ∈ N
+, the symmetric eigenvalues and eigenfunctions of

LU = −∆V − JF (x, U) in an open set Ω. Then we have

PROPOSITION 2.1. Let Ω be a bounded domain in R
N . Then the

Morse index of a solution U to (2.19) equals the number of negative
symmetric eigenvalues of the linearized operator LU .

Proof. Let us denote by µ(U) the number of negative symmetric eigen-
values of LU . If the quadratic form QU defined in (2.28) is negative
definite on a k-dimensional supspace of C1

c (Ω ∪ Γ), then, by iii) of
Theorem 2.2 we have that the k-th eigenvalue λk(−∆ + C; Ω) is neg-
ative. Hence µ(u) ≥ m(u). On the other hand if there are k negative
symmetric eigenvalues, by v) of Theorem 2.2 there is a k-dimensional
supspace of C1

c (Ω∪Γ) where the quadratic form Qu is negative definite,
hence m(u) ≥ µ(u). �

3. Proof of the symmetry results

3.1. On the k-sectional foliated Schwarz symmetry.

From now on we will consider the case of system (1.2) in a bounded
k-rotationally symmetric domain. Let us fix some notations.
For a unit vector e ∈ SN−1 we consider the hyperplane

H(e) = {x ∈ R
N : x · e = 0}

orthogonal to the direction e and the open half domain

Ω(e) = {x ∈ Ω : x · e > 0}

We then set

σe(x) = x− 2(x · e)e , x ∈ Ω ,

i.e. σe : Ω → Ω is the reflection with respect to the hyperplane H(e).
Finally if U : Ω → R

m is a continuous function we define the reflected
function Uσ(e) : Ω → R

m defined by

Uσ(e)(x) = U(σe(x))
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We will use in the sequel the rotating plane method, a variant of the
moving plane method in the version of Berestycki and Nirenberg (see
[2]), exploited e.g. in [18] and subsequent papers on foliated Schwarz
symmetry of solutions of equations.

THEOREM 3.1 (Rotating Planes method for systems ). Let Ω be
a bounded k-rotationally symmetric domain in R

N , F ∈ C1( [0,∞) ×
R

N−k×R
m ; Rm ) and U ∈ H

1
0(Ω)∩C

0(Ω;Rm) a weak solution of (1.2).
Assume that the system (1.2) is fully coupled along U in Ω and there
exists a direction eϑ0 = (cos(ϑ0), sin(ϑ0), 0, . . . , 0) such that

U < Uσ(eϑ0 ) in Ω(eϑ0)

Then there exists a direction eϑ1 = (cos(ϑ1), sin(ϑ1), 0, . . . , 0), with
ϑ1 > ϑ0, such that

U ≡ Uσ(eϑ1 ) in Ω(eϑ1)

and
U < Uσ(eϑ) in Ω(eϑ) ∀ ϑ ∈ (ϑ0, ϑ1)

Proof. Let us observe that the functions Uσ(eϑ) satisfy the same equa-
tion as U , namely−∆Uσ(eϑ) = F (|x′|, x′′, Uσ(eϑ)) in Ω, and both ‖U‖L∞(Ω(eϑ))

and ‖Uσ(eϑ)‖L∞(Ω(eϑ)) are bounded by ‖U‖L∞(Ω) =: A.
Let us fix δ = δ(A) as in Theorem 2.6 and observe that δ is independent
of ϑ, and the functions U, Uσ(eϑ) satisfy
(3.1)
{

−∆U = F (|x′|, x′′, U) ; −∆Uσ(eϑ) = F (|x′|, x′′, Uσ(eϑ)) in Ω(eϑ)

U = Uσ(eϑ) on ∂Ω(eϑ)

Let us set Θ = {ϑ ≥ ϑ0 : U < Uσ(eϑ′ ) in Ω(eϑ′) ∀ϑ′ ∈ (ϑ0, ϑ)} and let us
show that the set Θ is nonempty and contains an interval [ϑ0, ϑ0+ε) for
ε > 0 sufficiently small. Indeed we can take a compact set K ⊂ Ω(eϑ0)
such that |Ω(eϑ0) \ K| ≤ δ

2
and m = minK(U

σ(eϑ0 ) − U) > 0. By

continuity if ϑ is close to ϑ0 we have that K ⊂ Ω(eϑ), (U
σ(eϑ) − U) ≥

m
2
> 0 in K, |Ω(eϑ) \K| ≤ δ and (Uσ(eϑ) − U) ≥ 0 on ∂( Ω(eϑ) \K ).

Then by the weak comparison principle in small domains (Theorem 2.6)
we get that U ≤ Uσ(eϑ) in Ω′ = Ω(eϑ)\K and hence in Ω(eϑ). Moreover
U < Uσ(eϑ) in Ω(eϑ) by the strong comparison principle (Theorem 2.7).
So the set Θ is nonempty, and is bounded from above by ϑ0+ π, since,
considering the opposite direction, the inequality between U and the
reflected function gets reversed. Let us set ϑ1 = supΘ.
We claim that U ≡ Uσ(eϑ1 ) in Ω(eϑ1). Indeed, if this is not the case, we
get U < Uσ(eϑ1 ) in Ω(eϑ1) by the strong comparison principle (Theorem
2.7), since by continuity U ≤ Uσ(eϑ1 ) in Ω(eϑ1). Then, using again the
weak comparison principle in small domains and the previous technique
we get U < Uσ(eϑ) in Ω(eϑ) for ϑ > ϑ1 and close to ϑ1, contradicting
the definition of ϑ1. �
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Let us define, with a little abuse of notations,

(3.2) Sk−1 = {e ∈ SN−1 : e · ej = 0 , j = k + 1, . . . , N}

A sufficient condition for the k-sectional foliated Schwarz symmetry
is the following.

PROPOSITION 3.1. Let Ω be a k-rotationally symmetric domain
in R

N , 2 ≤ k ≤ N , and U ∈ H
1
0(Ω) ∩ C

0(Ω) a weak solution of (1.2)
where F = F (r, x′′, S) ∈ C1([0,∞)× Ω′′ × R

m;Rm). Assume that the
system is fully coupled along U in Ω and that ∀ e ∈ Sk−1

(3.3) either U ≥ Uσ(e) or U ≤ Uσ(e) in Ω(e)

Then U is k-sectionally foliated Schwarz symmetric.

The proof is similar to the one given, for the case k = N , in [6], with
some obvious change.

Let us consider a pair of orthogonal directions η1, η2 ∈ Sk−1, the polar
coordinates (ρ, ϑ) in the plane spanned by them and the corresponding
cylindrical coordinates (ρ, ϑ, ỹ), with ỹ ∈ R

N−2. Then we define for
U ∈ C2(Ω;Rm) the angular derivative

(3.4) Uϑ = Uϑ(η1,η2)

(trivially extended if ρ = 0) which solves the linearized system

(3.5)

{

−∆Uϑ − JF (|x|, U)Uϑ = 0 in Ω

Uϑ = 0 on ∂Ω

and, if e ∈ span (η1, η2) and U ≡ Uσ(e) in Ω(e), also the system

(3.6)

{

−∆Uϑ − JF (|x|, U)Uϑ = 0 in Ω(e)

Uϑ = 0 on ∂Ω(e)

Using the properties of the principal eigenvalue and of the corre-
sponding eigenfunction we deduce, as in the case k = N , (see [6],
[8], [9]), the following sufficient conditions for the k-sectionally foliated
Schwarz symmetry.

THEOREM 3.2 (Sufficient conditions for sectional FSS-Sistems). Let
Ω be a k-rotationally symmetric domain in R

N , 2 ≤ k ≤ N , and
U ∈ C2(Ω;Rm) a solution of (1.2), where F ∈ C1([0, R] × R

m;Rm).
Then U is k-sectionally foliated Schwarz symmetric provided one of the
following conditions holds:

i) there exists a direction e ∈ Sk−1 such that U ≡ Uσ(e) in Ω(e)

and the principal eigenvalue λ̃1(Ω(e)) of the linearized operator
LU = −∆− JF (x, U) in Ω(e) is nonnegative.

ii) there exists a direction e ∈ Sk−1 such that either U < Uσ(e) or
U > Uσ(e) in Ω(e)
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Remark 3.1. Let us observe that in Theorem 3.2 it is the nonneg-
ativity of the principal eigenvalue the crucial hypothesis, while the
information we get in the sequel will concern the symmetric eigenval-
ues of the linearized system. Therefore in the proofs that follow there
will be an interplay and a comparison between the principal eigenvalue
and the first symmetric eigenvalue in the cap Ω(e).

If U is a solution of (1.2), e ∈ Sk−1 and the system is fully coupled
along U in Ω, then the difference W =W e = U −Uσ(e) = (w1, . . . , wm)
satisfies a linear system in Ω, which is fully coupled in Ω and Ω(e):

LEMMA 3.1. The following assertions hold.

i) Assume that U ∈ C1(Ω;Rm) is a solution of (1.2) and that
the system is fully coupled along U in Ω. Let us define for any
direction e ∈ Sk−1 the matrix Be(x) =

(

beij(x)
)m

i,j=1
, where

(3.7) beij(x) = −

∫ 1

0

∂fi

∂sj

(

|x|, tU(x) + (1− t)Uσ(e)(x)
)

dt

Then for any e ∈ Sk−1 the function W e = U −Uσ(e) satisfies in
Ω(e) the linear system

(3.8)

{

−∆W e +Be(x)W e = 0 in Ω(e)

W e = 0 on ∂Ω(e)

which is fully coupled in Ω(e).

ii) If Ψ = (ψ1, . . . , ψm) ∈ H
1
0(Ω(e)) let Qe(Ψ; Ω(e)) denote the

quadratic form associated to the system (3.8) in Ω(e), i.e.

Qe(Ψ; Ω(e)) =

∫

Ω(e)

(

|∇Ψ|2 +Be(Ψ,Ψ)
)

dx

=

∫

Ω(e)

(

m
∑

i=1

|∇ψi|
2 +

m
∑

i,j=1

beij ψi ψj

)

dx

(3.9)

Then

(3.10) Qe(W e; Ω(e) ) =

∫

Ω(e)

[

|∇(W e)|2 +Be(W e,W e )
]

dx = 0

while for the positive and negative parts of W e the following
holds:

(3.11)

Qe( (W e)±; Ω(e) ) =

∫

Ω(e)

[

|∇(W e)±|2 +Be( (W e)±, (W e)± )
]

dx ≤ 0

Proof. From the equation −∆U = F (|x|, U(x)) we deduce that the re-
flected function Uσ(e) satisfies the equation −∆Uσ(e) = F (|x|, Uσ(e)(x))
and hence the difference W e = U − Uσ(e) = (w1, . . . , wm) satisfies

−∆W e = F (|x|, U)− F (|x|, Uσ(e))
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Let us set V = Uσ(e). For any i = 1, . . . , m we have that

fi(|x|, U(x))− fi(|x|, V (x)) =
m
∑

j=1

∫ 1

0

∂fi

∂sj
(|x|, tU(x) + (1− t)V (x)) (uj(x)− vj(x)) dt

As a consequenceW e satisfies (3.8). Moreover if i 6= j then beij(x) ≤ 0
by (2.24) , so that the linear system (3.8) is weakly coupled.

If U ∈ C1(Ω;Rm) is a solution of (1.2) and the system is fully coupled
along U then the linear system associated to the matrix Be is fully

coupled in Ω. Indeed if i0 6= j0 and
∂fi0
∂sj0

(x, U(x)) > 0 then, since
∂fi(y)
∂sj

≥ 0 for every y ∈ Ω, we get that

bij(x) = −
∫ 1

0
∂fi
∂sj

[|x|, tU(x) + (1− t)V (x)] dt < 0.

Since Be is symmetric with respect to the reflection σe, (3.8) is fully
coupled in Ω(e) as well and i) is proved.

To get (3.10) it is enough to multiply the i-th equation of the system
for wi and integrate. Instead, multiplying the i-th equation of (3.8) for
w+

i , we get

0 =

∫

Ω(e)

(|∇w+
i |

2 +

m
∑

j=1

beijwjw
+
i ) dx ≥

∫

Ω(e)

(|∇w+
i |

2 +

m
∑

j=1

beijw
+
j w

+
i ) dx

since wiw
+
i = |w+

i |
2, while wjw

+
i ≤ w+

j w
+
i and bij ≤ 0 if i 6= j.

Summing on i we get

0 ≥

∫

Ω(e)

m
∑

i=1

|∇w+
i |

2 +

m
∑

i,j=1

beijw
+
j w

+
i dx

i.e. (3.11) in the case of the positive part.
For the negative part we proceed analogously multiplying the i-th

equation of (3.8) for w−
i and integrating. We get

0 = −
∫

Ω(e)
|∇w−

i |
2+
∑m

j=1 b
e
ijwjw

−
i dx ≤ −

∫

Ω(e)
|∇w−

i |
2+
∑m

j=1 b
e
ij(−w

−
j )w

−
i dx

= −
∫

Ω(e)
|∇w−

i |
2 −

∑m

j=1 b
e
ij(w

−
j )w

−
i dx

since wiw
−
i = −|w−

i |
2, while wjw

−
i ≥ −(w−

j )w
−
i and bij ≤ 0 if i 6= j.

Summing on i we obtain

0 ≥

∫

Ω(e)

m
∑

i=1

|∇w−
i |

2 +

m
∑

i,j=1

beijw
−
j w

−
i dx

i.e. (3.11) in the case of the negative part.
�

Remark 3.2. Note that the inequalities in (3.11) could be strict.
Indeed the products w+

i w
−
j could be not identically zero if i 6= j,

and therefore Q(W e) does not coincide in general with Q((W e)+) +
Q((W e)−), as it happens in the scalar case.
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3.2. Nonlinearities having convex components.

We will prove Theorem 1.1 by several auxiliary results.

LEMMA 3.2. Assume that U is a solution of (1.2) and that the hy-
potheses i)–ii) of Theorem 1.1 hold. Then for any direction e ∈ Sk−1

QU

(

(W e)+; Ω(e)
)

≤ 0

where QU is the quadratic form defined in (2.28) and W e is as in
Lemma 3.1.

Proof. For any i = 1, . . . , m we have

−∆wi = fi(|x|, U)− fi(|x|, U
σ(e)) in Ω(e)

Testing the equation with w+
i we obtain

(3.12)

∫

Ω(e)

|∇(wi)
+|2 dx =

∫

Ω(e)

(

fi(|x|, U)− fi(|x|, U
σ(e))

)

w+
i dx

Observe that fi(|x|, S) is convex in S, so that

( fi(|x|, U(x))−fi(|x|, U
σ(e)(x)) )w+

i ≤ (∇fi(|x|, U(x))·(U(x)−U
σ(e)(x)) )w+

i

= (∇fi(|x|, U(x)) ·W
e )w+

i =
∑m

j=1
∂fi
∂uj

(|x|, U(x))wj w
+
i

where ∇ stands for the gradient of fi with respect to the variables
S = (s1, . . . , sm). Moreover

∂fi

∂si
wiw

+
i =

∂fi

∂si
|w+

i |
2 , while

∂fi

∂sj
wj w

+
i ≤

∂fi

∂sj
w+

j w
+
i if i 6= j

because ∂fi
∂sj

≥ 0 by the weak coupling assumption.

By (3.12), taking into account the previous inequalities, we get

∫

Ω(e)

|∇(wi)
+|2 dx ≤

∫

Ω(e)

m
∑

j=1

∂fi

∂sj
(|x|, U(x))w+

j w
+
i dx

Thus, summing on i = 1, . . . , m, we obtain

(3.13)

∫

Ω(e)

(

m
∑

i=1

|∇(wi)
+|2 −

m
∑

i,j=1

∂fi

∂sj
(|x|, U(x))w+

i w
+
j

)

dx ≤ 0

i.e. QU ((W e)+; Ω(e)) ≤ 0. �

If e ∈ Sk−1 is a direction orthogonal to ek+1, . . . , eN and C =
1
2
(JF (x) + JF (x)

t), let us denote the eigenvalues and the eigenfunc-
tions of the operator −∆− C in the cap Ω(e) by

(3.14) λek = λk(−∆− C ; Ω(e)) ; Φe
k = Φk(−∆− C ; Ω(e))
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LEMMA 3.3. Suppose that U is a solution of (1.2) with Morse index
m(U) ≤ k and assume that the hypothesis i) of Theorem 1.1 holds.
Then there exists a direction e ∈ Sk−1 such that λe1 ≥ 0, hence also

the corresponding principal eigenvalue λ̃1(LU ,Ω(e)) is nonnegative, by
Theorem 2.5, so that

QU(Ψ; Ω(e)) ≥ 0

for any Ψ ∈ C1
c (Ω(e);R

m) .

Proof. The assertion is immediate if the Morse index of the solution
satisfies m(u) ≤ 1. Indeed in this case for any direction e at least one
among λe1 and λ−e

1 must be nonnegative. Indeed if this would not be
the case then the quadratic form QU(Ψ) =

∫

Ω
(|∇Ψ|2−C(x) (Ψ,Ψ)) dx

would be negative definite on the 2- dimensional space spanned by the
trivial extensions of the eigenfunctions Φe

1 and Φ
−e
1 and hencem(u) ≥ 2.

So let us assume that 2 ≤ j = m(u) ≤ k.
Denote by Φk the L2(Ω) normalized eigenfunctions of the operator

LU = −∆ − C in Ω, with Φ1 positive in Ω, and for any direction
e ∈ Sk−1 let us consider the function

Ψe(x) =



















(

(Φ−e
1 ,Φ1)L2(Ω)

(Φe
1 ,Φ1)L2(Ω)

)
1
2

Φe
1(x) if x ∈ Ω(e)

−

(

(Φe
1 ,Φ1)L2(Ω)

(Φ−e
1 ,Φ1)L2(Ω)

)
1
2

Φ−e
1 (x) if x ∈ Ω(−e)

where Φe
1 is the first positive L2-normalyzed eigenfunction in Ω(e), as

in (3.14).
The mapping e 7→ Ψe is odd and continuous from Sk−1 to H1

0 (Ω)
and, by construction,

(3.15) (Ψe , Φ1)L2(Ω) = 0

The function h : Sk−1 → R
j−1 defined by

(3.16) h(e) =
(

(Ψe , Φ2)L2(Ω), . . . , (Ψ
e , Φj)L2(Ω)

)

is also odd and continuous. Since (j − 1) < k, by the Borsuk-Ulam
Theorem it must have a zero. This means that there exists a direc-
tion e ∈ Sk−1 such that Ψe is orthogonal to all the eigenfunctions
Φ1, . . . ,Φj. Since m(u) = j, by Theorem 2.2 ii) we deduce that
QU(Ψ

e; Ω) ≥ 0, which in turn implies that either Qu(Φ
e
1; Ω(e)) ≥ 0

or QU(Φ
−e
1 ; Ω(−e)) ≥ 0, i.e. either λe1 or λ−e

1 is nonnegative, so the
assertion is proved. �

Proof of Theorem 1.1. By Lemma 3.3 there exists a direction e ∈ Sk−1

such that the first symmetric eigenvalue λs1(LU ,Ω(e)) of the linearized

operator is nonnegative, so that the principal eigenvalue λ̃1(Ω(e)) is
nonnegative as well. Moreover by Lemma 3.2 we have thatQU ((W e)+) ≤
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0, so that either (W e)+ ≡ 0, or λs1(LU ,Ω(e)) = 0 and (W e)+ is the posi-
tive first symmetric eigenfunction in Ω(e). In any case either U ≤ Uσ(e)

or U ≥ Uσ(e) in Ω(e) holds.
Thus, by the strong maximum principle, either U ≡ Uσ(e) in Ω(e), and

the principal eigenvalue λ̃1(Ω(e)) is nonnegative, or U < Uσ(e) in Ω(e)
or U > Uσ(e) in Ω(e). Hence, by Theorem 3.2 U is foliated Schwarz
symmetric.

�

Remark 3.3. In the previous proof when (U − Uσ(e))+ ≡ 0 we also
have by construction that λs1(Lu,Ω(e)) ≥ 0 and therefore the principal

eigenvalue satisfies λ̃1(Ω(e)) = λ̃1(Ω(−e)) ≥ 0.
In the case when U < Uσ(e) in Ω(e) or U > Uσ(e) in Ω(e), by rotating

the planes we find a different direction e′ such that U ≡ Uσ(e′) in
Ω(e′) and it could happen that λs1(Ω(e

′)) < 0. However let us observe
explicitly that the sign of the principal eigenvalue is preserved in the
rotation, i.e. λ̃1(Ω(e

′)) = λ̃1(Ω(−e
′)) ≥ 0, and actually λ̃1(Ω(e

′)) =

λ̃1(Ω(−e
′)) = 0.

Indeed since U < Uσ(g) for any direction g between e and e′, we have
that 0 is the principal eigenvalue of the system satisfied by U − Uσ(g),
namely (3.8), with coefficients

b
g
ij(x) = −

∫ 1

0

∂fi

∂sj

[

|x|, tU(x) + (1− t)Uσ(g)(x)
]

dt

As g → e′, where e′ is the symmetry position, the coefficients bij ap-

proach the coefficients of the linearized system, namely cij = − ∂fi
∂sj

, so

by continuity λ̃1(Ω(e
′)) = λ̃1(Ω(−e

′)) = 0.

3.3. Nonlinearities with convex derivatives.

The proof of Theorem 1.2 follows the scheme of the proof of Theorem
1.1, and it is based upon the following results.

LEMMA 3.4. Assume that U is a solution of (1.2) and the hypotheses
of Theorem 1.2 hold. Let Be(x) =

(

beij(x)
)m

i,j=1
be the matrix associated

to the fully coupled system (3.8) defined by (3.7), i.e.

beij(x) = −

∫ 1

0

∂fi

∂sj

[

|x|, tU(x) + (1− t)Uσ(e)(x)
]

dt

and let us define the matrix Be,s(x) =
(

b
e,s
ij (x)

)m

i,j=1
, where

(3.17) b
e,s
ij (x) = −

1

2

(

∂fi

∂sj
(|x|, U(x)) +

∂fi

∂sj
(|x|, Uσ(e)(x))

)
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Then the linear system with matrix Be,s is fully coupled in Ω and Ω(e)
for any e ∈ SN−1. Moreover for any i, j = 1, . . . , m and x ∈ Ω it holds

(3.18) beij(x) ≥ b
e,s
ij (x)

Finally for the quadratic forms Qe and Qe,s associated to the matrices
Be and Be,s we have that

(3.19)

0 ≥ Qe( (W e)±; Ω(e) ) =

∫

Ω(e)

[

|∇(W e)±|2 +Be( (W e)±, (W e)± )
]

dx

≥

∫

Ω(e)

[

|∇(W e)±|2 +Be,s( (W e)±, (W e)± )
]

dx = Qe,s( (W e)±; Ω(e) )

for W e = U − Uσ(e),

Proof. By hypothesis ii) of Theorem 1.2 we get

(3.20) − beij(x) =

∫ 1

0

∂fi

∂sj

[

|x|, tU(x) + (1− t)Uσ(e)(x)
]

dt

≤

∫ 1

0

(

t
∂fi

∂sj
[|x|, U(x)] + (1− t)

∂fi

∂sj

[

|x|, Uσ(e)(x)
]

)

dt

=
1

2

(

∂fi

∂sj
(|x|, U(x)) +

∂fi

∂sj
(|x|, Uσ(e)(x))

)

= −be,sij (x)

This implies (3.18) and hence the full coupling of the system with
matrix Be,s, since, by Lemma 3.1, the system with matrix Be is fully
coupled. From (3.11) and (3.18), since w±

k ≥ 0, we get

0 ≥

∫

Ω(e)

(

m
∑

i=1

|∇w+
i |

2 +
m
∑

i,j=1

beijw
+
j w

+
i

)

dx ≥

∫

Ω(e)

(

m
∑

i=1

|∇w+
i |

2 +
m
∑

i,j=1

b
e,s
ij w

+
j w

+
i

)

dx

i.e. (3.19) in the case of the positive part of W e. Analogously we get
the corresponding inequality for the negative part of W e. �

LEMMA 3.5. Suppose that U is a solution of (1.2) with Morse index
m(U) ≤ k− 1 and assume that the hypothesis i) of Theorem 1.2 holds.
Let Qe,s be the quadratic form associated to the operator Le,s(V ) =
−∆V +Be,sV , Be,s being the matrix defined in (3.17) :

Qe,s(Ψ; Ω′) =

∫

Ω′

[

|∇Ψ|2 +Be,s(Ψ,Ψ)
]

dx =

∫

Ω

[

m
∑

i=1

|∇ψi|
2 −

m
∑

i,j=1

1

2

(

∂fi

∂sj
(|x|, U(x)) +

∂fi

∂sj
(|x|, Uσ(e)(x))

)

ψiψj

]

dx

(3.21)
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Then there exists a direction e ∈ Sk−1 such that

Qe,s(Ψ; Ω(e)) ≥ 0 ∀ Ψ ∈ C1
c (Ω(e);R

m)

Equivalently the first symmetric eigenvalue λs1(L
e,s,Ω(e)) of the oper-

ator Le,s(V ) = −∆V + Be,sV in Ω(e) is nonnegative (and hence also

the principal eigenvalue λ̃1(L
e,s,Ω(e)) is nonnegative).

Proof. Let us assume that 1 ≤ j = m(U) ≤ k − 1 and let Φ1, . . . ,Φj

be mutually orthogonal eigenfunctions corresponding to the negative
symmetric eigenvalues λs1(LU ,Ω), . . . , λ

s
j(LU ,Ω) of the linearized oper-

ator LU(V ) = −∆V − JF (x, U)V in Ω .
For any e ∈ Sk−1 let φe,s be the first positive L2-normalized eigen-
function of the symmetric system associated to the linear operator Le,s

in Ω(e). We observe that φe,s is uniquely determined since the corre-
sponding system is fully coupled in Ω(e). Let Φe,s be the odd extension
of Φe,s to Ω, and let us observe that Φ−e,s = −Φe,s, because Be,s is sym-
metric with respect to the reflection σe.
The mapping e 7→ Φe,s is a continuous odd function from Sk−1 to
H1

0 (Ω ∪ Γ), therefore the mapping h : Sk−1 → R
j defined by

h(e) =
(

(Φe,s , Φ1)L2(Ω), . . . , (Φ
e,s , Φj)L2(Ω)

)

is an odd continuous mapping, and since j ≤ k − 1, by the Borsuk-
Ulam Theorem it must have a zero. This means that there exists a
direction e ∈ Sk−1 such that Φe,s is orthogonal to all the eigenfunctions
Φ1, . . . ,Φj. This implies that QU(Φ

e,s; Ω) ≥ 0, because m(U) = j,
and since Φe,s is an odd function, we obtain that 0 ≤ QU(Φ

e,s; Ω) =
Qe,s(Φe,s,Ω) = 2Qe,s(φe,s,Ω(e)) = 2λs1(L

e,s,Ω(e)) �

Proof of Theorem 1.2. By Lemma 3.5 there exists a direction e such
that the first symmetric eigenvalue λs1(L

e,s,Ω(e)) of the operator Le,s(V ) =
−∆V +Be,sV in Ω(e) is nonnegative, and hence also the principal eigen-

value λ̃1(L
e,s,Ω(e)) is nonnegative.

Since Qe,s( (W e)±; Ω(e) ) ≤ 0 by Lemma 3.4, we have two alterna-
tives. The first one is that (W e)+ and (W e)− both vanish, in which
case W e ≡ 0 in Ω(e), and this implies in turn that Le,s = LU . Then U

is symmetric and the principal eigenvalue λ̃1(LU ,Ω(e)) is nonnegative,
so that the hypothesis i) of Theorem 3.2 holds and we get that U is
foliated Schwarz symmetric. The second alternative is that one among
(W e)+ and (W e)− does not vanish and λs1(L

e,s,Ω(e)) = 0. Then ei-
ther (W e)+ or (W e)− is a first symmetric eigenfunction of the operator
Le,s(V ) in Ω(e). If (W e)+ is a first symmetric eigenfunction of the
operator Le,s(V ) = −∆V + Be,sV in Ω(e) then it is positive in Ω(e),
i.e. U > Uσe in Ω(e). In the case when (W e)− is the first symmetric
eigenfunction we get the reversed inequality. Then, by the sufficient
condition ii) given by Theorem 3.2, u is foliated Schwarz symmetric.

�
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Proof of Corollary 1.1. By the proof of Theorem 1.1 and Remark 3.3
we can find e ∈ Sk−1 such that U is symmetric with respect to the
hyperplane H(e) and the principal eigenvalue λ̃1(Ω(e)) = λ̃1(Ω(−e)) ≥
0. As in the proof of Lemma 3.3 it is easy to see that if U is a
Morse index one solution then for any direction e either λs1(LU ,Ω(e)) or
λs1(LU ,Ω(−e)) must be nonnegative. On the other hand, by symmetry,

λs1(Ω(e)) = λs1(Ω(−e)), so that λ̃1(Ω(e)) = λ̃1(Ω(−e)) ≥ λs1(Ω(e)) =
λs1(Ω(−e)) ≥ 0.

Then, if λ̃1(Ω(e)) > 0, the angular derivative Uθ must vanish (since
it satisfies (3.6) and the maximum principle holds in Ω(e)). Hence U
is radial.
So if Uθ 6≡ 0 necessarily λ̃1(Ω(e)) = λs1(Ω(e)) = 0 and by iv) of Propo-
sition 2.5 the derivative Uθ is a negative first eigenfunction of the sim-
metrized system in Ω(e), as well as a solution of (3.6). Thus we get
that

JF (|x|, U)Uθ =
1

2

(

JF (|x|, U) + J t
F (|x|, U)

)

Uθ

i.e. (1.4) and if m = 2 we get (1.5), since Uθ is strictly negative.
The proof in the case when the hypotheses of Theorem 1.2 hold is

the same. �
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