Two generalizations of the notion of principal eigenvalue for elliptic operators in ℝNare examined in this paper. We prove several results comparing these two eigenvalues in various settings: general operators in dimension one; self-adjoint operators; and "limit periodic" operators. These results apply to questions of existence and uniqueness for some semilinear problems in the whole space. We also indicate several outstanding open problems and formulate some conjectures. © European Mathematical Society 2006.
On the principal eigenvalue of elliptic operators in ℝNand applications / Berestycki, H.; Rossi, L.. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 8:2(2006), pp. 195-215. [10.4171/JEMS/47]
On the principal eigenvalue of elliptic operators in ℝNand applications
Rossi L.
2006
Abstract
Two generalizations of the notion of principal eigenvalue for elliptic operators in ℝNare examined in this paper. We prove several results comparing these two eigenvalues in various settings: general operators in dimension one; self-adjoint operators; and "limit periodic" operators. These results apply to questions of existence and uniqueness for some semilinear problems in the whole space. We also indicate several outstanding open problems and formulate some conjectures. © European Mathematical Society 2006.File | Dimensione | Formato | |
---|---|---|---|
Berestychi_preprint_On-the-principal-eigenvalue_2006.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
254.12 kB
Formato
Adobe PDF
|
254.12 kB | Adobe PDF | |
Berestychi_On-the-principal-eigenvalue_2006.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
181.99 kB
Formato
Adobe PDF
|
181.99 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.