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Abstract

Two generalizations of the notion of principal eigenvalue for elliptic operators in RN

are examined in this paper. We prove several results comparing these two eigenvalues in
various settings: general operators in dimension one; self-adjoint operators; and “limit
periodic” operators. These results apply to questions of existence and uniqueness for
some semi-linear problems in all of space. We also indicate several outstanding open
problems and formulate some conjectures.

1 Introduction

The principal eigenvalue is a basic notion associated with an elliptic operator. For instance,
the study of semi-linear elliptic problems in bounded domains often involves the principal
eigenvalue of an associated linear operator. To motivate the results of the present paper, let
us first recall some classical properties of a class of semi-linear elliptic problems in bounded
domains.

Let −L be a linear elliptic operator acting on functions defined on a bounded and smooth
domain Ω ⊂ RN :

Lu = aij(x) ∂ij u+ bi(x) ∂i u+ c(x) u

(here and throughout the paper, the convention is adopted for summation on repeated in-
dices).

Consider the Dirichlet problem:

{
− Lu = g(x, u), x ∈ Ω

u = 0 on ∂Ω
(1.1)
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We are interested in positive solutions of (1.1). Assume that g is a C1 function such that:

g(x, s) < g′s(x, 0)s, ∀s > 0, ∀ x ∈ Ω

and:

∃ M > 0 such that g(x, s) + c(x)s ≤ 0, ∀s ≥M

Then, existence of positive solutions of (1.1) is determined by the principal eigenvalue µ1

of the problem linearized about u = 0:

{
−L ϕ− gs(x, 0) ϕ = µ1 ϕ in Ω

ϕ = 0 on ∂Ω
(1.2)

Recall that µ1 is characterized by the existence of an associated eigenfunction ϕ > 0 of
(1.2). It is known indeed that (1.1) has a positive solution if and only if µ1 > 0 (see e.g.
[2]). Under the additional assumption that s 7→ g(x, s)/s is decreasing, one further obtains
a uniqueness result [2].

Problems of the type (1.1) arise in several contexts, in particular in population dynam-
ics. In many of the applications, the problem is set in an unbounded domain, often in RN .
Clearly, extensions to unbounded domains of the previous result, as well as others of the
same type, require one to understand the generalizations and properties of the notion of
principal eigenvalue of elliptic operators in unbounded domains. In Section 2, we indicate
some new results about such a semi-linear problem, extending the result for (1.1).

Another example of use of principal eigenvalue is the characterization of the existence of
the Green function for linear periodic operators (see Agmon [1]). We refer to [18] and to
its bibliography for details on the subject. Moreover, the principal eigenvalue of an elliptic
operator has been shown to play an important role in some questions in branching processes
(see Englander and Pinsky [9], Pinsky [19]). Very recently, the principal eigenvalue of an
elliptic operator in RN is being introduced in the context of economic models [11].

Some definitions of the notion of principal eigenvalue in unbounded domains have emerged
in the works of Agmon [1], Berestycki, Nirenberg and Varadhan [6], Pinsky [18] and others.
With a view to applications to semi-linear equations, in particular two definitions have been
used in [3], [4], [5]. We will recall these definitions later in this section. In this paper,
we examine these definitions and further investigate their properties. In particular, we are
interested in understanding when the two definitions coincide or for which classes of operators
does one or the other inequality hold. We also further explain the choice of definition. This
work grew out of our previous article with François Hamel [5] which already addressed some
of these issues. We review the relevant results from [5] in Section 3.

Let us now recall the definitions. In the sequel, we define the class of elliptic operators
(in non-divergence form) as the elliptic operators −L with

Lu = aij(x)∂iju+ bi(x)∂iu+ c(x)u, in RN.
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Self-adjoint elliptic operators −L, are defined by:

Lu = ∂i(aij(x)∂ju) + c(x)u, in RN,

(we use the usual summation convention on repeated indices). Throughout the paper, (aij)ij
will denote a N ×N symmetric matrix field such that

∀ x, ξ ∈ RN , a|ξ|2 ≤ aij(x)ξiξj ≤ a|ξ|2, (1.3)

where a and a are two positive constants, (bi)i will denote a N dimensional vector field and
c a real valued function. We always assume that there exists 0 < α ≤ 1 such that:

aij, bi, c ∈ C0,α
b (RN), (1.4)

in the case of general operators, and

aij ∈ C1,α
b (RN), c ∈ C0,α

b (RN), (1.5)

in the self-adjoint case. By Ck,α
b (RN), we mean the class of functions φ ∈ Ck(RN) such

that φ and the derivatives of φ up to the order k are bounded and are uniformly Hölder
continuous with exponent α. Notice that every self-adjoint operator satisfying (1.5) can be
viewed as a particular case of general elliptic operator satisfying (1.4).

It is well known that any elliptic operator −L as defined above admits a unique principal
eigenvalue, either in bounded smooth domains associated with Dirichlet boundary conditions,
as well as in RN provided that its coefficients are periodic in each variable. This principal
eigenvalue is the bottom of the spectrum of −L in the appropriate function space, and it
admits an associated positive principal eigenfunction. This result follows from the Krein
Rutman theory and from compactness arguments (see [14] and [13]).

In this paper, we examine some properties of two different generalizations of the principal
eigenvalue in unbounded domains. The first one, originally introduced in [6], reads:

Definition 1.1 Let −L be a general elliptic operator defined in a domain Ω ⊆ RN . We set

λ1(−L,Ω) := sup{λ | ∃ φ ∈ C2(Ω) ∩ C1
loc(Ω), φ > 0 and (L+ λ)φ ≤ 0 in Ω}, (1.6)

Here, C1
loc(Ω) denotes the set of functions φ ∈ C1(Ω) for which φ and ∇φ can be extended

by continuity on ∂Ω, but which are not necessarily bounded. Berestycki, Nirenberg and
Varadhan showed that this is a natural generalization of the principal eigenvalue. Indeed,
if Ω is bounded and smooth, then λ1(−L,Ω) coincides with the principal eigenvalue of −L
in Ω, with Dirichlet boundary conditions. As we will see later, the eigenvalue λ1 does not
suffice to completely describe the properties of semi-linear equations in the whole space, in
contradistinction with the Dirichlet principal eigenvalue in bounded domains for problem
(1.1). For this, we also require another generalization, whose definition is similar to that of
λ1. This generalization has been introduced in [3], [5] and reads:

Definition 1.2 Let −L be a general elliptic operator defined in a domain Ω ⊆ RN . We set

λ′1(−L,Ω) := inf{λ | ∃ φ ∈ C2(Ω) ∩ C1
loc(Ω) ∩W 2,∞(Ω), φ > 0 and − (L+ λ)φ ≤ 0 in Ω,

φ = 0 on ∂Ω, if ∂Ω 6= ∅}. (1.7)
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Several other generalizations are possible, starting from Definition 1.1 and playing on
the space of functions or the inf and sup inequalities. We will explain why Definition 1.2 is
relevant.

If L is periodic (in the sense that its coefficients are periodic in each variable, with same
period) then λ1(−L,RN) ≥ λ′1(−L,RN), as is shown by taking φ equal to a positive periodic
principal eigenfunction in (1.6) and (1.7). More generally, if there exists a bounded positive
eigenfunction ϕ, then λ1 ≥ λ′1. But in general, if the operator L is not self-adjoint, equality
need not hold between λ1 and λ′1, even if L is periodic (see Section 3). It is then natural to
ask what are the relations between λ1 and λ′1 in the general case. In Section 3, we review a
list of statements, most of them given in [5], which answer this question in some particular
cases. In Section 4, we state our new main results as well as some problems which are still
open. In Section 5, we motivate our choice of taking (1.6) and (1.7) as generalizations of the
principal eigenvalue. The last three sections are dedicated to the proofs of our main results.

2 Positive solutions of semi-linear elliptic problems in

RN

Let us precisely describe how the eigenvalues λ1 and λ′1 are involved in the study of the
following class of nonlinear problems:

− aij(x)∂iju(x)− bi(x)∂iu(x) = f(x, u(x)), in RN . (2.8)

This type of problem arises in particular in biology and in population dynamics. Here and
in the sequel, the function f(x, s) : RN ×R→ R is assumed to be in C0,α

b (RN) with respect
to the variable x, locally uniformly in s ∈ R, and to be locally lipschitz-continuous in the
variable s, uniformly in x ∈ RN . Furthermore, we always assume that f satisfies:

∀ x ∈ RN , f(x, 0) = 0,

∃ δ > 0 such that s 7→ f(x, s) belongs to C1([0, δ]), uniformly in x ∈ RN ,

fs(x, 0) ∈ C0,α
b (RN).

We will always denote with L0 the linearized operator around the solution u ≡ 0 associated
to the equation (2.8), that is:

L0u = aij(x)∂iju+ bi(x)∂iu+ fs(x, 0)u, in RN.

In [3] it is proved that, under suitable assumptions on f , if L0 is self-adjoint and the functions
aij and x 7→ f(s, x) are periodic (in each variable) with same period, then (2.8) admits a
unique positive bounded solution if and only if the periodic principal eigenvalue of −L0 is
less than or equal to zero (see Theorems 2.1 and 2.4 in [3]). This result has been extended
in [5] to non-periodic, non-self-adjoint operators, by using λ1(−L0,RN) and λ′1(−L0,RN)
instead of the periodic principal eigenvalue of −L0. The assumptions required are:

∃M > 0, ∀ x ∈ RN , ∀ s ≥M, f(x, s) ≤ 0, (2.9)
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∀ x ∈ RN , ∀ s ≥ 0, f(x, s) ≤ fs(x, 0)s. (2.10)

The existence result of [5] is:

Theorem 2.1 Let L0 be the linearized operator around zero associated to equation (2.8).
1) If (2.9) holds and either λ1(−L0,RN) < 0 or λ′1(−L0,RN) < 0, then there exists at

least one positive bounded solution of (2.8).
2) If (2.10) holds and λ′1(−L0,RN) > 0, then there is no nonnegative bounded solution

of (2.8), other than the trivial one u ≡ 0.

Theorem 2.1 follows essentially from Definitions 1.1, 1.2 and a characterization of λ1 (see
Theorem 5.1 and Propositions 6.1, 6.5 in [5] for details). In [9], Engländer and Pinsky proved
a similar existence result for a class of solution of minimal growth (which they define there)
for nonlinearities of the type f(x, u) = b(x)u− a(x)u2, with inf a > 0 (see also [8], [19]).

Since the theorem involves both λ1 and λ′1, one does not have a simple necessary and
sufficient condition. This is one of the motivations to investigate the properties of these
two generalized eigenvalues. In particular, it is useful to determine conditions which yield
equality between them or at least that yield an ordering.

From the results we prove in this paper we can deal in particular with the case that
the operator is self-adjoint limit periodic. The notion of limit periodic operator is defined
precisely below in section 4.2. Essentially, it means that the operator is the uniform limit
(in the sense of coefficients) of a sequence of periodic operators. In this case, we still have a
condition, extending that in theorem 2.1, which is nearly necessary and sufficient.

Theorem 2.2 If −L0 is a self-adjoint limit periodic operator, then we have:
1) If (2.9) holds and λ1(−L0,RN) < 0, then there exists at least one positive bounded

solution of (2.8). If, in addition, (2.11) below holds, then such a solution is unique.
2) If (2.10) holds and λ1(−L0,RN) > 0, then there is no nonnegative bounded solution

of (2.8), other than the trivial one u ≡ 0.
The same result holds in dimension N=1 if L0 is an arbitrary self adjoint operator.

The case of equality: λ1(−L0,RN) = 0 is open.
For uniqueness, in unbounded domains, one needs to replace the classical assumption

that s 7→ f(x, s)/s is decreasing by the following one:

∀ 0 < s1 < s2, inf
x∈RN

(
f(x, s1)

s1

− f(x, s2)

s2

)
> 0. (2.11)

The uniqueness result of [5] is more delicate and involves the principal eigenvalue of some
limit operators defined there. It becomes simpler to state in the case the coefficients in (2.8)
are almost periodic, in the sense of the following definition:

Definition 2.3 A function g : RN → R is said to be almost periodic (a.p.) if from any
sequence (xn)n∈N in RN one can extract a subsequence (xnk)k∈N such that g(xnk+x) converges
uniformly in x ∈ RN .
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Theorem 2.4 (Theorem 1.5 in [5]) Assume that the functions aij, bi and fs(·, 0) are a.p.
If (2.11) holds and λ1(−L0,RN) < 0, then (2.8) admits at most one nonnegative bounded
solution, besides the trivial one: u ≡ 0.

Theorems 2.1 and 2.4 essentially contain the results in the periodic self-adjoint framework
(which hold under the same assumptions (2.9), (2.10) and (2.11)). In that case, in fact,
λ1(−L0,RN) and λ′1(−L0,RN) coincide with the periodic principal eigenvalue of −L0 (see
Proposition 3.3 below) and then the only case which is not covered is when the periodic
principal eigenvalue is equal to zero.

3 Some properties of the generalized principal eigen-

values λ1 and λ′1 in RN

In this section, unless otherwise specified, −L denotes a general elliptic operator. When we
say that L is periodic, we mean that there exist N positive constants l1, · · · , lN such that

∀ x ∈ RN , ∀ i ∈ {1, · · · , N}, aij(x+ liei) = aij(x), bi(x+ liei) = bi(x), c(x+ liei) = c(x),

where (e1, · · · , eN) is the canonical base of RN . The following are some of the known results
concerning λ1 and λ′1. Actually, in some statements of [5], the coefficients of L were in
C0,α(RN)∩L∞(RN) and the “test functions” φ in the definition of λ′1 were taken in C2(RN)∩
W 1,∞(RN) instead of C2(RN)∩W 2,∞(RN). However, one can check that the following results
- as well as Theorem 2.1 - can be proved arguing exactly as in the proofs of the corresponding
results in [5].

Proposition 3.1 ([6] and Proposition 4.2 in [5]) Let Ω be a general domain in RN and
(Ωn)n∈N be a sequence of nonempty open sets such that

Ωn ⊂ Ωn+1,
⋃
n∈N

Ωn = Ω.

Then λ1(−L,Ωn)↘ λ1(−L,Ω) as n→ +∞.

Proposition 3.1 yields that λ1(−L,RN) < +∞. Furthermore, taking φ ≡ 1 as a test
function in (1.6), we see that λ1(−L,RN) ≥ −‖c‖∞. Thus, λ1 is always a well defined real
number.

In the case of L periodic, the periodic principal eigenvalue of −L is defined as the unique
constant such that there exists a positive periodic ϕ ∈ C2(RN) satisfying (L + λ)ϕ = 0 in
RN . Its existence follows from the Krein Rutman theory.

Proposition 3.2 (Proposition 6.3 in [5]) If L is periodic, then its periodic principal eigen-
value λp coincides with λ′1(−L,RN).

6



It is known that, in the general non-self-adjoint case, λ1 6= λ′1. Indeed, as an example,
consider the one dimensional operator −Lu = −u′′ + u′, which is periodic with arbitrary
positive period. Then it is easily seen that

λ′1(−L,R) = 0 <
1

4
= λ1(−L,RN).

In fact, since ϕ ≡ 1 satisfies −Lϕ = 0, it follows that the periodic principal eigenvalue of
−L is 0 and then, by Proposition 3.2, λ′1(−L,R) = 0. On the other hand, for any R > 0,
the function

ϕR(x) := cos
( π

2R
x
)
e

1
2
x

satisfies: −LϕR = (1
4

+ π2

4R2 )ϕR, which shows that ϕR is a principal eigenfunction of −L in
(−R,R), under Dirichlet boundary conditions. Therefore, by Proposition 3.1,

λ1(−L,R) = lim
R→∞

(
1

4
+

π2

4R2

)
=

1

4
> λ′1(−L,R).

Proposition 3.3 (Proposition 6.6 in [5]) If the elliptic operator −L is self-adjoint and pe-
riodic, then λ1(−L,RN) = λ′1(−L,RN) = λp, where λp is the periodic principal eigenvalue
of −L.

For the sequel of this paper it is useful to recall the proof of the last statement.

Proof of Proposition 3.3. First, from Proposition 3.2 one knows that λp = λ′1(−L,RN).
Now, let ϕp be a positive periodic principal eigenfunction of −L in RN . Taking φ = ϕp in
(1.6), it is straightforward to see that λ1(−L,RN) ≥ λp.

To show the reverse inequality, consider a family of cutoff functions (χR)R≥1 in C2(RN),
uniformly bounded in W 2,∞(RN), such that 0 ≤ χR ≤ 1, suppχR ⊂ BR and χR = 1 in BR−1.

Fix R > 1 and call λR the principal eigenvalue of −L in BR. It is obtained by the
following variational formula:

λR = min


∫
BR

(
aij(x)∂iv∂jv − c(x)v2

)
∫
BR

v2

; v ∈ H1
0 (BR), v 6= 0

 . (3.12)

Taking v = ϕpχR as a test function in (3.12), and calling CR = BR \ BR−1, we find:

λR ≤ −
∫
BR

(
L(ϕpχR)

)
ϕpχR∫

BR
ϕ2
pχ

2
R

=
λp
∫
BR−1

ϕ2
p −

∫
CR

(
L(ϕpχR)

)
ϕpχR∫

BR
ϕ2
pχ

2
R

= λp −
λp
∫
CR
ϕ2
pχ

2
R +

∫
CR

(
L(ϕpχR)

)
ϕpχR∫

BR
ϕ2
pχ

2
R

.

Since minϕp > 0, it follows that there exists K > 0, independent of R, such that∫
BR

ϕ2
pχ

2
R ≥

∫
BR−1

ϕ2
p ≥ K(R− 1)N .
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Consequently,

λR ≤ λp +K ′
RN−1

(R− 1)N
,

where K ′ is a positive constant independent of R. Letting R go to infinity and using Propo-
sition 3.1, we get: λ1(−L,RN) ≤ λp and therefore, λ1(−L,RN) = λp. �

The next result is an extension of the previous proposition. It is still about periodic
operators, but which are not necessarily self-adjoint. A gradient type assumption on the
first order coefficients is required.

Theorem 3.4 (Theorem 6.8 in [5]) Consider the operator

Lu := ∂i(aij(x)∂ju) + bi(x)∂iu+ c(x)u, x ∈ RN ,

where aij, bi, c are periodic in x, with the same period (l1, · · · , lN), the matrix field A(x) =
(aij(x))1≤i,j≤N is in C1,α(RN), elliptic and symmetric, the vector field b = (b1, · · · , qN) ∈
C1,α(RN) and c ∈ C0,α(RN). Assume that there is a function B ∈ C2,α(RN) such that
aij∂jB = bi for all i = 1, . . . , N and assume that the vector field A−1b has zero average in
the periodicity cell C = (0, l1)× · · · × (0, lN). Then λ1(−L,RN) = λp = λ′1(−L,RN), where
λp is the periodic principal eigenvalue of −L in RN .

Next, the natural question is to ask what happens when we drop the periodicity assump-
tion. Up to now, the only available result had been obtained in [5] in the case of dimension
one. It stated:

Proposition 3.5 (Proposition 6.11 in [5]) Let −L be a self-adjoint operator in dimension
one. Then λ1(−L,R) ≤ λ′1(−L,R).

This type of result will be extended below.

4 Main results and open problems

The goal of this paper is to further explore these properties. We will examine three main
classes: self-adjoint operators in low dimension, limit periodic operators and general opera-
tors in dimension one. We seek to identify classes of operators for which either equality or
an inequality between λ1 and λ′1 hold.

4.1 Self-adjoint case

Our first result is an extension of the comparison result of Proposition 3.5 to dimensions
N = 2, 3 in the self-adjoint framework.

Theorem 4.1 Let −L be a self-adjoint elliptic operator in RN , with N ≤ 3. Then
λ1(−L,RN) ≤ λ′1(−L,RN).

The assumption N ≤ 3 in Theorem 4.1 seems to be only technical, as well as it was for
the assumption N = 1 in Proposition 3.5. This is why we believe that the above result holds
in any dimension N . But the problem is open at the moment.
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4.2 Limit periodic operators

Next, we examine the class of limit periodic operators which extends that of periodic oper-
ators. In a sense, this class is intermediate between periodic and a.p. Here is the definition:

Definition 4.2 1) We say that a general elliptic operator −L is general limit periodic if
there exists a sequence of general elliptic periodic operators

−Lnu := −anij∂iju− bni ∂iu− cnu

such that anij → aij, b
n
i → bi and cn → c in C0,α

b (RN) as n goes to infinity.
2) We say that a self-adjoint elliptic operator −L is self-adjoint limit periodic if there

exists a sequence of self-adjoint elliptic periodic operators

−Lnu := −∂i(anij∂ju)− cnu

such that anij → aij in C1,α
b (RN) and cn → c in C0,α

b (RN) as n goes to infinity.

Clearly, if all the coefficients of the operators Ln in Definition 4.2 have the same period
(l1, · · · , lN), then L is periodic too. It is immediate to show that the coefficients of a limit
periodic operator are in particular a.p. in the sense of Definition 2.3. One of the results we
obtain is:

Theorem 4.3 Let −L be a general limit periodic operator. Then λ′1(−L,RN) ≤
λ1(−L,RN).

The other result obtained concerns self-adjoint limit periodic operators. It extends Propo-
sition 3.3.

Theorem 4.4 Let −L be a self-adjoint limit periodic operator. Then λ1(−L,RN) =
λ′1(−L,RN).

In the proofs of Theorems 4.3 and 4.4, we make use of the Shauder interior estimates and
the Harnack inequality. One can find a treatment of these results in [10], or one can consult
[15], [16] and [21] for the original proofs of the Harnack inequality.

Going back to the nonlinear problem, owing to Theorem 4.4, the existence and uniqueness
results in the limit periodic case can be expressed in terms of λ1 (or, equivalently, λ′1) only,
which is the statement of Theorem 2.2.

4.3 The case of dimension N = 1

Our last result establishes a comparison between λ1 and λ′1 for general elliptic operators in
dimension one:

Theorem 4.5 Let −L be a general elliptic operator in dimension one. Then λ′1(−L,R) ≤
λ1(−L,R).

Notice that, by Theorems 4.3 and 4.5, if −L0 is limit periodic or N = 1, then we can state
Theorem 2.1 without mentioning λ1. Hence, only the sign of λ′1 is involved in the existence
result.
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4.4 Open problems

The notions of generalized principal eigenvalue raise several questions which still need an
answer. Some of them are:

Open problem 4.6 Does (2.8) admit positive bounded solutions (even in the self-adjoint
case) if λ′1(−L0,RN) = 0 ?

Open problem 4.7 Is it true that λ′1(−L,RN) ≤ λ1(−L,RN), for any general elliptic op-
erator −L and any dimension N ?

Conjecture 4.8 If −L is a self-adjoint elliptic operator, then λ1(−L,RN) ≤ λ′1(−L,RN) in
any dimension N .

Note that should the answers to both 4.7 and 4.8 be positive, then we would have λ1 = λ′1
in the self-adjoint case, in arbitrary dimension.

5 Different definitions of the generalized principal

eigenvalue

In this section, we present various definitions which one could consider as generalizations of
the principal eigenvalue in the whole space. Then, we explain the choice of (1.6) and (1.7)
as the most relevant extensions. Here, −L will always denote a general elliptic operator
(satisfying (1.3) and (1.4)).

The quantity λ1 given by (1.6) is often called the “generalized” principal eigenvalue. It
is considered the “natural” generalization of the principal eigenvalue because, as already
mentioned, it coincides with the Dirichlet principal eigenvalue in bounded smooth domains.
Also, the sign of λ1 determines the existence or non-existence of a Green function for the
operator (see Theorem 3.2 in [17]). The constant λ′1 has been introduced, more recently, in
[3]. If Ω is bounded and smooth, then λ′1(−L,Ω) = λ1(−L,Ω). Moreover, as we have seen
in Proposition 3.2, in the periodic case λ′1 coincides with the periodic principal eigenvalue.

The quantity λ1 is the largest constant λ for which −(L+λ) admits a positive subsolution.
The definition of λ′1 is based on that of λ1, with two changes: first, we take subsolutions
instead of supersolutions (and we replace the sup with the inf); second, we take test functions
in W 2,∞. If we introduce only one of these changes, we obtain the following definitions:

µ1(−L,Ω) := sup{λ | ∃ φ ∈ C2(Ω) ∩ C1(Ω) ∩W 2,∞(Ω), φ > 0 and (L+ λ)φ ≤ 0 in Ω,

φ = 0 on ∂Ω, if ∂Ω 6= ∅}, (5.13)

or

µ′1(−L,Ω) := inf{λ | ∃ φ ∈ C2(Ω) ∩ C1
loc(Ω), φ > 0 and − (L + λ)φ ≤ 0 in Ω}, (5.14)

The quantity µ1 is not interesting for us because, as is shown by Remark 6.2 in [5], if we
replace λ′1 with µ1, then the necessary condition given by Theorem 2.1 part 2) fails to hold.
For completeness, we include this observation here.
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Remark 5.1 Consider the equation −u′′−b(x)u′ = 0 in R. We show that, for b opportunely
chosen, there exists a positive function φ ∈ C2(R) ∩W 2,∞(R) such that (L0 + 1)φ ≤ 0 in R
(L0u = u′′+b(x)u′ in this case). Therefore, µ1(−L0,R) ≥ 1, but all the functions u identically
equal to a positive constant solve −u′′ − b(x)u′ = 0. The function φ is defined in [−1, 1] by:
φ(x) = 2−x2. For x ∈ (−1, 1), we have that (L0 +1)φ = −2−2b(x)x+φ ≤ −2b(x)x. Hence,
it is sufficient to take b(x) ≤ 0 for x ≤ 0 and b(x) ≥ 0 for x ≥ 0 to obtain: (L0 + 1)φ ≤ 0 in
(−1, 1). Then set

φ(x) :=

{
ex if x ≤ −2
e−x if x ≥ 2.

For x < −2, (L0 + 1)φ = ex(2 + b(x)) and, for x > 2, (L0 + 1)φ = e−x(2 − b(x)). Hence, if
b ≤ −2 for x < −2 and b(x) > 2 for x > 2, we find: (L0 + 1)φ ≤ 0 in (−∞,−2) ∪ (2,+∞).
Clearly, it is possible to define φ in (−2,−1) ∪ (1, 2) in such a way that inf [−2,−1] φ

′ > 0,
sup[1,2] φ

′ < 0 and φ ∈ C2(R) ∩W 2,∞(R). Consequently, taking b < −M in (−2,−1) and
b > M in (1, 2), with M > 0 large enough, we get: (L0 + 1)φ ≤ 0 in R.

Neither is the definition (5.14) much meaningful as, in general, µ′1 = −∞. This is seen
next.

Remark 5.2 Consider the following family of functions:

∀ k > 0, φk(x) := ekx·v, x ∈ RN ,

where v is an arbitrary unit vector in RN . Straightforward computation yields:

−Lφk = −aij(x)vivjk
2φk − (b(x) · v)kφk − c(x)φk ≤ (−a k2 + ‖b‖∞ k + ‖c‖∞)φk,

where a is given by (1.3) and b(x) = (b1(x), · · · , bN(x)). Therefore, for every λ ∈ R there
exists k > 0 large enough such that −(L+λ)φk ≤ 0 and then the quantity µ′1(−L,R) defined
by (5.14) is equal to −∞.

On the contrary, we have:

Remark 5.3 The quantity λ′1(−L,RN) given by (1.7) satisfies: −‖c‖∞ ≤ λ′1(−L,RN) ≤
‖c‖∞. In fact, taking φ ≡ 1 in (1.7), we see that λ′1(−L,RN) ≤ ‖c‖∞. For the other
inequality, consider λ ∈ R and φ ∈ C2(RN)∩W 2,∞(RN) such that: φ > 0 and −(L+λ)φ ≤ 0.
Let M be the supremum of φ and (xn)n∈N be a maximizing sequence for φ. For n ∈ N, define:

∀ x ∈ RN , θn(x) := φ(x)− (M − φ(xn))|x− xn|2.

Arguing similarly to the proof of Lemma 7.2 below, one can see that every function θn has a
local maximum in a point yn ∈ B1(xn). Furthermore, limn→∞ φ(yn) = limn→∞ φ(xn) = M .
We have:

0 ≥ −(L+λ)φ(yn) ≥ 2(φ(xn)−M)aii(yn) + 2(φ(xn)−M)bi(yn)(yn−xn)i− (c(yn) +λ)φ(yn).

It follows that λ ≥ − lim inf
n→∞

c(yn) ≥ −‖c‖∞. This shows that λ′1(−L,RN) ≥ −‖c‖∞.
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6 Self-adjoint operators in dimension N ≤ 3

The proof of Theorem 4.1 consists in a not so immediate adaptation of the proof of Propo-
sition 3.3. It makes use of the following observation, which holds in any dimension N .

Lemma 6.1 Let φ ∈ C2(RN) be a nonnegative function. Let Λ(x) be the largest eigenvalue
of the matrix (∂ijφ(x))ij and assume that Λ := supx∈RN Λ(x) < +∞. Then we have:

∀ x ∈ RN , |∇φ(x)|2 ≤ 2Λφ(x). (6.15)

Proof. First, if Λ ≤ 0 then, for every i = 1, · · · , N , ∂iiφ ≤ 0. This shows that φ is
concave in every direction xi and then, since it is nonnegative, is constant. In particular,
(6.15) holds.

Consider the case Λ > 0. The Taylor expansion of φ at the point x ∈ RN gives:

∀ y ∈ RN , φ(y) = φ(x) +∇φ(x)(y − x) +
1

2
∂ijφ(z)(y − x)i(y − x)j,

where z is a point lying on the segment connecting x and y. Hence,

0 ≤ φ(y) ≤ φ(x) +∇φ(x)(y − x) +
1

2
Λ|y − x|2.

If we take in particular y = x−∇φ(x)/Λ we obtain:

0 ≤ φ(x)− |∇φ(x)|2

2Λ

and the statement is proved. �

Note that, if φ is a positive function in W 2,∞(RN), then Lemma 6.1 yields that its gradient
is controlled by the square root of φ. Actually, this is the reason why in (1.7) we take test
functions in W 2,∞(RN).

Proof of Theorem 4.1. Let λ ∈ RN be such that there exists a positive function φ ∈
C2(RN) ∩W 2,∞(RN) satisfying: −(L + λ)φ ≤ 0. We would like to proceed as in the proof
of Proposition 3.3, with ϕp replaced by φ, and obtain λ1(−L,RN) ≤ λ. This is not possible
because, in general, φ is not bounded from below away from zero. Lemma 6.1 allows to
overcome this difficulty. Consider in fact the same type of cutoff functions (χR)R≥1 as in
Proposition 3.3 and call λR the principal eigenvalue of −L in BR with Dirichlet boundary
conditions. The representation formula (3.12), yields for R ≥ 1:

λR ≤

∫
BR

[
aij(x)∂i(φχR)∂j(φχR)− c(x)φ2χ2

R

]
∫
BR

φ2χ2
R

.

12



Hence, since χR = 1 on BR−1, we get:

λR ≤ λ−

∫
CR

[
2aij(x)(∂iφ)(∂jχR)φχR + ∂i(aij(x)∂jχR)φ2χR

]
∫
BR

φ2χ2
R

.

Our aim is to prove that, by appropriately choosing the cutoff functions (χR)R≥1 we get:

lim sup
R→∞

∫
CR

[
2aij(x)(∂iφ)(∂jχR)φχR + ∂i(aij(x)∂jχR)φ2χR

]
∫
BR

φ2χ2
R

≥ 0. (6.16)

These conditions are:

∀ x ∈ BR \ BR−1/2, χR(x) = exp

(
1

|x| −R

)
,

∀ x ∈ BR−1/2, χR(x) ≥ e−1/2.

By direct computation, we see that, for x ∈ BR \ BR−1/2,

∇χR(x) = − x

|x|
(R− |x|)−2 exp

(
1

|x| −R

)
,

and

∂ijχR(x) =

[(
xixj
|x|3
− δij
|x|

)
(|x| −R)2 + 2

xixj
|x|2

(|x| −R) +
xixj
|x|2

]
(|x| −R)−4 exp

(
1

|x| −R

)
.

Consequently, using the usual summation convention, we have:

∀ x ∈ BR \ BR−1/2, ∂i(aij(x)∂jχR) ≥ [a− C(|x| −R)] (|x| −R)−4 exp

(
1

|x| −R

)
,

where C only depends on N and the W 1,∞ norm of the aij (and not on R) and a is given
by (1.3). Therefore, there exists h independent of R with 0 < h ≤ 1/2 and such that
∂i(aij(x)∂jχR) ≥ 0 in BR \ BR−h. Since χR > exp(−h−1) in BR−h, it is possible to chose
C ′ large enough, independent of R, such that ∂i(aij(x)∂jχR) ≥ −C ′χR in BR. On the
other hand, owing to Lemma 6.1, we can find another constant C ′′ > 0, depending only on
N, ‖aij‖L∞(RN ), ‖φ‖W 2,∞(RN ) and ‖χR‖W 2,∞(RN ) (which does not depend on R), such that

aij(x)(∂iφ)(∂jχR) ≥ −C ′′φ1/2χ
1/2
R .

Assume, by way of contradiction, that (6.16) does not hold. There exist then ε > 0 and
R0 ≥ 1 such that, for R ≥ R0,

−ε
∫
BR

φ2χ2
R ≥

∫
CR

[
2aij(x)(∂iφ)(∂jχR)φχR + ∂i(aij(x)∂jχR)φ2χR

]
≥ −

∫
CR

(
C ′χ2

Rφ
2 + 2C ′′φ3/2χ

3/2
R

)
.

13



Since φ and χR are bounded, the above inequalities yield the existence of a positive constant
k such that, for R ≥ R0,

k

∫
BR

φ2χ2
R ≤

∫
CR

φ3/2χ
3/2
R .

Notice that, since φ > 0, we can choose k > 0 in such a way that the above inequality holds
for any R ≥ 1. Using the Hölder inequality, with p = 4/3 and p′ = 4, we then obtain:

∀ R ≥ 1,

∫
BR

φ2χ2
R ≤ k−1

(∫
CR

φ2χ2
R

)3/4

|CR|1/4 ≤ K−1R
N−1

4

(∫
CR

φ2χ2
R

)3/4

,

where K is another positive constant. For n ∈ N call αn :=
(∫

Cn
φ2χ2

n

)3/4

. Since for n ∈ N
we have that ∫

Bn

φ2χ2
n =

n−1∑
j=1

∫
Cj

φ2 +

∫
Cn

φ2χ2
n ≥

n∑
j=1

∫
Cj

φ2χ2
j ,

it follows that

αn ≥ Kn
1−N

4

n∑
j=1

α
4/3
j . (6.17)

We claim that the sequence (αn)n∈N grows faster than any power of n. This is in contradiction
with the definition of αn, because

αn =

(∫
Cn

φ2χ2
R

)3/4

≤ ‖φ‖2L∞(RN )|Cn|
3/4 ≤ Hn

3
4
(N−1),

for some positive constant H. To prove our claim, we use (6.17) recursively. At the first

step we have: αn ≥ K0n
β0 , where K0 = Kα

4/3
1 and β0 = 1−N

4
. At the second step we get:

αn ≥ KK
4/3
0 n

1−N
4

∑n
j=1 j

4
3
β0 . If β0 > −3/4 (i.e. if N < 4) then

∑n
j=1 j

4
3
β0 ∼ n

4
3
β0+1. Hence,

there exists K1 > 0 such that αn ≥ K1n
β1 , where β1 = 4

3
β0 + 5−N

4
. Proceeding at the

same way we find, after m steps, that αn ≥ Kmn
βm , where Km is a positive constant and

βm = 4
3
βm−1 + 5−N

4
, provided that β0, . . . , βm−1 > −3/4. If βm−1 > −3/4, we have that

βm > βm−1 ⇔ βm−1 >
3

4
(N − 5).

Since

β0 >
3

4
(N − 5) ⇔ N < 4,

it follows that for N ≤ 3 the sequence (βm)m∈N is strictly increasing. Thus, limm→∞ βm =
+∞ if N ≤ 3, because the only fixed point of the sequence xm = 4

3
xm−1 + 5−N

4
is 3

4
(N − 5)

which is lesser than β0. Therefore, as n→∞, an goes to infinity faster than any polynomial
in n. �
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7 Limit periodic operators

Throughout this section, we consider limit periodic elliptic operators −L. According to
Definition 4.2, we let either

Lnu = anij(x)∂iju+ bni (x)∂iu+ cn(x)u

if −L is a general operator, or

Lnu = ∂i(a
n
ij(x)∂ju) + cn(x)u

if −L is self-adjoint. We denote with λn and ϕn respectively the periodic principal eigenvalue
and a positive periodic principal eigenfunction of −Ln in RN .

Our results make use of the following Lemma.

Lemma 7.1 The sequence (λn)n∈N is bounded and

lim
n→∞

∥∥∥∥(L− Ln)ϕn
ϕn

∥∥∥∥
L∞(RN )

= 0.

Proof. We can assume, without loss of generality, that the operators −L,−Ln are general
elliptic. Since the operators Ln are periodic, from Proposition 3.2 and Remark 5.3 it follows
that

−‖cn‖∞ ≤ λ′1(−Ln,RN) = λn ≤ ‖cn‖∞.

Hence, the sequence (λn)n∈N is bounded because cn → c in C0,α
b (RN). For all n ∈ N, the

functions ϕn satisfy −(Ln+λn)ϕn = 0. Then, using interior Schauder estimates, we can find
a constant Cn > 0 such that

∀ x ∈ RN , ‖ϕn‖C2,α
b (B1(x)) ≤ Cn‖ϕn‖L∞(B2(x)),

where the Cn are controlled by λn and ‖anij‖C0,α
b (RN ), ‖bni ‖C0,α

b (RN ), ‖cn‖C0,α
b (RN ). We know

that the λn are bounded in n ∈ N, and the same is true for the C0,α
b norms of anij, b

n
i and

cn because they converge in the C0,α
b norm to aij, bi and c respectively. Thus, there exists

a positive constant C such that C ≥ Cn for every n ∈ N. Moreover, applying the Harnack
inequality for the operators −(Ln + λn), we can find another positive constant C ′, which is
again independent of n (and x), such that

∀ x ∈ RN , ‖ϕn‖L∞(B2(x)) ≤ C ′ϕn(x).

Therefore,

sup
x∈RN

∣∣∣∣(L− Ln)ϕn(x)

ϕn(x)

∣∣∣∣ ≤ sup
x∈RN

(‖aij − anij‖∞ + ‖bi − bni ‖∞ + ‖c− cn‖∞)‖ϕn‖C2,α
b (B1(x))

ϕn(x)

≤ CC ′(‖aij − anij‖∞ + ‖bi − bni ‖∞ + ‖c− cn‖∞),
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which goes to zero as n goes to infinity. �

Proof of Theorem 4.3. For n ∈ N define:

Hn :=

∥∥∥∥(L− Ln)ϕn
ϕn

∥∥∥∥
L∞(RN )

. (7.18)

By Lemma 7.1, we know that limn→∞Hn = 0. Since |(L + λn)ϕn| ≤ Hnϕn, it follows that
(L + λn − Hn)ϕn ≤ 0 and −(L + λn + Hn)ϕn ≤ 0. Hence, using ϕn as a test function in
(1.6) and (1.7), we infer that λ1(−L,RN) ≥ λn −Hn and λ′1(−L,RN) ≤ λn + Hn, for every
n ∈ N. The proof is complete because, passing to the lim inf and the lim sup as n goes to
infinity in the above inequalities, we get:

λ′1(−L,RN) ≤ lim inf
n→∞

λn ≤ lim sup
n→∞

λn ≤ λ1(−L,RN). (7.19)

�

The proof of Theorem 4.4 is divided into two parts, the first one being the next Lemma.

Lemma 7.2 The sequence (λn)n∈N converges to λ′1(−L,RN) as n goes to infinity.

Proof. Proceeding as in the proof of Theorem 4.3, we derive (7.19). So, we only need to
show that lim supn→∞ λn ≤ λ′1(−L,RN). To this end, consider a constant λ ≥ λ′1(−L,RN)
such that there exists a positive function φ ∈ C2(RN)∩W 2,∞(RN) satisfying −(L+λ)φ ≤ 0.
Fix n ∈ N and define ψn := knϕn − φ, where kn is the positive constant (depending on n)
such that inf ψn = 0 (such a constant always exists - and it is unique - because ϕn is bounded
from below away from zero and φ is bounded from above). From the inequalities

−(L+ λ)ψn ≥ −kn(L+ λ)ϕn = kn(Ln − L)ϕn + kn(λn − λ)ϕn

and defining Hn as in (7.18), we find that

− (L+ λ)ψn ≥ kn(λn − λ−Hn)ϕn. (7.20)

Since inf ψn = 0, there exists a sequence (xm)m∈N in RN such that limm→∞ ψn(xm) = 0. For
m ∈ N, define the functions:

θm(x) := ψn(x) + ψn(xm)|x− xm|2, x ∈ RN .

Since θm(xm) = ψn(xm) and θm(x) ≥ ψn(xm) for x ∈ ∂B1(xm), for any m ∈ N, there exists
ym ∈ B1(xm) point of local minimum of θm. Hence,

0 = ∇θm(ym) = ∇ψn(ym) + 2ψn(xm)(ym − xm)

and
0 ≤ (∂ijθ(ym))ij = (∂ijψn(ym))ij + 2ψn(xm)I,

where I denotes the N ×N identity matrix. Thanks to the ellipticity of −L, we then get:

− (L+λ)ψn(ym) ≤ 2ψn(xm)aii(ym)+2ψn(xm)bi(ym)(ym−xm)i− (c(ym)+λ)ψn(ym). (7.21)
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Furthermore, since

θm(ym) = ψn(ym) + ψn(xm)|ym − xm|2 ≤ θm(xm) = ψn(xm),

we see that ψn(ym) ≤ ψn(xm). Consequently, taking the limit as m goes to infinity in (7.21),
we derive: lim supm→∞−(L+ λ)ψn(ym) ≤ 0. Therefore, by (7.20),

lim sup
m→∞

kn(λn − λ−Hn)ϕn(ym) ≤ 0,

which implies that λn − λ − Hn ≤ 0 because infRN ϕn > 0. Since by Lemma 7.1 we know
that Hn goes to zero as n goes to infinity, it follows that

λ ≥ lim sup
n→∞

(λn −Hn) = lim sup
n→∞

λn.

Taking the infimum over all such constants λ we finally get: λ′1(−L,RN) ≥ lim supn→∞ λn.
�

Proof of Theorem 4.4. Owing to Theorem 4.3, it only remains to show that λ1(−L,RN) ≤
λ′1(−L,RN). To do this, we fix R > 1 and n ∈ N and proceed as in the proof of Proposition
3.3, replacing the test function ϕp by ϕn. We this get:

λ1(−L,BR) ≤ −
∫
BR

(
L(ϕnχR)

)
ϕnχR∫

BR
ϕ2
nχ

2
R

=

∫
BR−1

((λn + Ln − L)ϕn)ϕn −
∫
CR

(
L(ϕnχR)

)
ϕnχR∫

BR
ϕ2
nχ

2
R

= λn −

∫
BR−1

((L− Ln)ϕn)ϕn +
∫
CR

(
(L+ λn)ϕnχR

)
ϕnχR∫

BR
ϕ2
nχ

2
R

.

Setting Hn as in (7.18), we get:

λ1(−L,BR) ≤ λn +
Hn

∫
BR−1

ϕ2
n +Kn|CR|∫

BR
ϕ2
nχ

2
R

,

where |CR| denotes the measure of the set CR and Kn is a positive constant (independent of
R because the χR are uniformly bounded in C2(RN)). Therefore, since minRN ϕn > 0, there
exists another constant K̃n > 0 such that

λ1(−L,BR) ≤ λn +Hn +
K̃n

R
.

Letting R go to infinity in the above inequality and using Proposition 3.1, this shows
that: λ1(−L,RN) ≤ λn + Hn. By Lemmas 7.1 and 7.2, we know that Hn → 0 and
λn → λ′1(−L,RN), as n goes to infinity. Thus, we conclude that λ1(−L,RN) ≤ λ′1(−L,RN).
�
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8 The inequality λ′1 ≤ λ1 in dimension N = 1

In this section, we are concerned with general elliptic operators in dimension one, that is
operators of the type:

−Lu = −a(x)u′′ − b(x)u′ − c(x)u, x ∈ R,

with the usual regularity assumptions on a, b, c. The elliptic condition becomes: a ≤ a(x) ≤
a, for some constants 0 < a ≤ a.

Proof of Theorem 4.5. Fix R > 0 and call λR and ϕR the principal eigenvalue and
eigenfunction respectively of −L in (−R,R), with Dirichlet boundary condition. Then define

ψR(x) :=
h

k
e−k(x−R), x ∈ R

where h, k are two positive constants that will be chosen later. The function ψR satisfies:

−(L+ λR)ψR =

(
−a(x)k + b(x)− (c(x) + λR)

1

k

)
he−k(x−R).

There exists k0 > 0 (independent of h) such that −(L + λR)ψR < 0 in R for any choice
of k ≥ k0. Our aim is to connect smoothly the functions ϕR and ψR in order to obtain a
function φR ∈ C2([0,+∞)) ∩W 2,∞([0,+∞)) satisfying −(L + λR)φR ≤ 0. To this end, we
set: gR(x) := η(x−R + δ)3, with η, δ > 0 to be chosen. Since

−(L+ λR)gR = [−6a(x)− 3b(x)(x−R + δ)− (c(x) + λR)(x−R + δ)2]η(x−R + δ),

we can find a constant δ0 > 0 such that −(L + λR)gR ≤ 0 in (R − δ, R), for any choice of
0 < δ ≤ δ0. Then we define:

φR(x) :=


ϕR(x), for 0 ≤ x ≤ R− δ
ϕR(x) + gR(x), for R− δ < x ≤ R
ψR(x), for x > R.

(8.22)

It follows that, if k ≥ k0 and δ ≤ δ0, then the function ϕR satisfies −(L + λR)φR ≤ 0 in
(0, R − δ) ∪ (R − δ, R) ∪ (R,+∞). In order to ensure the C2 regularity of φR, we need to
solve the following system in the variables h, k, η, δ:

ηδ3 =
h

k
ϕ′R(R) + 3ηδ2 = −h
ϕ′′R(R) + 6ηδ = hk.

One can see that, if h < −ϕ′R(R) (notice that ϕ′R(R) < 0 by the Hopf’s lemma), the previous
system becomes, after some simple algebra,

γ(h) = ϕ′′R(R)δ

δk =
3h

−ϕ′R(R)− h

η =
hk − ϕ′′R(R)

6δ
,

(8.23)
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where

γ(h) :=
3h2

−ϕ′R(R)− h
+ 2(h+ ϕ′R(R)).

We want to show that there exists δ small enough such that the system (8.23) admits positive
solutions δ, hδ, kδ, ηδ satisfying:

δ ≤ δ0, hδ < −ϕ′R(R), kδ ≥ k0. (8.24)

Let 0 < δ1 ≤ δ0 be such that |ϕ′′R(R)|δ1 < −ϕ′R(R). Thus, if δ ≤ δ1, the first equation
of (8.23) yields: |γ(h)| < −ϕ′R(R). Since γ(0) = 2ϕ′R(R) and limh→−ϕ′R(R)− γ(h) = +∞,
there exists a constant 0 < h1 < −ϕ′R(R) such that, for any choice of δ ∈ (0, δ1), the first
equation of (8.23) admits a solution hδ ∈ [h1,−ϕ′R(R)). For δ ∈ (0, δ1) and h = hδ, the
second equation of (8.23) gives:

kδ =
3hδ

−ϕ′R(R)− hδ
δ−1 ≥ 3h1

−ϕ′R(R)− h1

δ−1. (8.25)

Hence, for δ small enough, we have kδ ≥ k0. Finally, by the last equation of (8.23), for
δ ∈ (0, δ1), we have

ηδ =
hδkδ − ϕ′′R(R)

6δ
≥ h1kδ − ϕ′′R(R)

6δ
,

and then, since kδ satisfies (8.25), ηδ > 0 for δ small enough. Therefore, there exist four
positive constants h, k, η, δ solving (8.23) and satisfying (8.24). With this choices of h, k, η, δ,
the function φR is in C2([0,+∞)) ∩W 2,∞([0,+∞)).

Proceeding as above, we can extend ϕR(x) for x negative, and get a function φR ∈
C2(R)∩W 2,∞(R) such that −(L+ λR)φR ≤ 0 in R. Using φR as a test function in (1.7), we
find that λ′1(−L,R) ≤ λR. Thus, passing to the limit as R goes to infinity, by Proposition
3.1, we derive λ′1(−L,R) ≤ λ1(−L,R). The proof is thereby complete. �

Remark 8.1 Using the same type of construction as in Theorem 4.5, one can prove that the
inequality λ′1(−L,RN) ≤ λ1(−L,RN) holds for any elliptic operator −L which is rotationally
invariant. Consider in fact an elliptic operator of type

−Lu = −a(|x|)4u− b(|x|) x
|x|
· ∇u− c(|x|)u, in RN ,

with b(0) = 0 and with the usual ellipticity and regularity assumptions on the coefficients.
For R > 0, let λR and ϕR respectively denote its Dirichlet principal eigenvalue and eigen-
function in BR. It is easy to see that, for any orthogonal matrix M , the function ϕR(Mx) is
again a Dirichlet positive eigenfunction of −L in BR. Hence, by uniqueness of the principal
eigenfunction up to multiplication, it follows that ϕR(x) ≡ ϕR(Mx), that is ϕR is a radial
function. Since for any radial function u = u(|x|) the expression of Lu reads:

Lu = a(|x|)u′′ +
(
b(|x|) +

N − 1

|x|
a(|x|)

)
u′ + c(|x|)u,

we can proceed as in the one-dimensional case and build a radial function φR ∈ C2(RN) ∩
W 2,∞(RN) such that −(L + λR)φR ≤ 0. Therefore, λ′1(−L,RN) ≤ λR and then, passing to
the limit as R→∞, we obtain the stated inequality between λ1 and λ′1
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