We analyze the asymptotic behavior of a 2-dimensional integral current which is almost minimizing in a suitable sense at a singular point. Our analysis is the second half of an argument which shows the discreteness of the singular set for the following three classes of 2-dimensional currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.
Regularity theory for $2$-dimensional almost minimal currents III: Blowup / De Lellis, Camillo; Spadaro, Emanuele; Spolaor, Luca. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - 116:1(2020), pp. 125-185. [10.4310/jdg/1599271254]
Regularity theory for $2$-dimensional almost minimal currents III: Blowup
Spadaro, Emanuele;
2020
Abstract
We analyze the asymptotic behavior of a 2-dimensional integral current which is almost minimizing in a suitable sense at a singular point. Our analysis is the second half of an argument which shows the discreteness of the singular set for the following three classes of 2-dimensional currents: area minimizing in Riemannian manifolds, semicalibrated and spherical cross sections of 3-dimensional area minimizing cones.File | Dimensione | Formato | |
---|---|---|---|
DeLellis_Regularity-theory_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
620.68 kB
Formato
Adobe PDF
|
620.68 kB | Adobe PDF | Contatta l'autore |
DeLellis_preprint_Regularity-theory_2020.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
459.29 kB
Formato
Adobe PDF
|
459.29 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.