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REGULARITY THEORY FOR 2-DIMENSIONAL ALMOST MINIMAL
CURRENTS III: BLOWUP

CAMILLO DE LELLIS, EMANUELE SPADARO AND LUCA SPOLAOR

Abstract. We analyze the asymptotic behavior of a 2-dimensional integral current which
is almost minimizing in a suitable sense at a singular point. Our analysis is the second
half of an argument which shows the discreteness of the singular set for the following
three classes of 2-dimensional currents: area minimizing in Riemannian manifolds, semi-
calibrated and spherical cross sections of 3-dimensional area minimizing cones.

This paper is the fourth and last in a series of works aimed at establishing an optimal
regularity theory for 2-dimensional integral currents which are almost minimizing in a
suitable sense. Building upon the monumental work of Almgren [1], Chang in [3] established
that 2-dimensional area-minimizing currents in Riemannian manifolds are classical minimal
surfaces, namely they are regular (in the interior) except for a discrete set of branching
singularities. The argument of Chang is however not entirely complete since a key starting
point of his analysis, the existence of the so-called “branched center manifold”, is only
sketched in the appendix of [3] and requires the understanding (and a suitable modification)
of the most involved portion of the monograph [1].

An alternative proof of Chang’s theorem has been found by Rivière and Tian in [13] for
the special case of J-holomorphic curves. Later on the approach of Rivière and Tian has
been generalized by Bellettini and Rivière in [2] to handle a case which is not covered by
[3], namely that of special Legendrian cycles in S5.

Meanwhile the first and second author revisited Almgren’s theory giving a much shorter
version of his program for proving that area-minimizing currents are regular up to a set of
Hausdorff codimension 2, cf. [4, 5, 6, 7, 8]. In this note and its companion papers [10, 9]
we build upon the latter works in order to give a complete regularity theory which includes
both the theorems of Chang and Bellettini-Rivière as special cases. In order to be more
precise, we introduce the following terminology (cf. [11, Definition 0.3]).

Definition 0.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T ) ⊂ Σ ∩ U is area-
minimizing in Σ ∩ U if M(T + ∂S) ≥ M(T ) for any m + 1-dimensional integral
current S with spt(S) ⊂⊂ Σ ∩ U .

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c ≤ 1 at every
x ∈ Σ, where ‖ ·‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral

current T with spt(T ) ⊂ Σ is semicalibrated by ω if ωx(~T ) = 1 for ‖T‖-a.e. x.
(c) An m-dimensional integral current T supported in ∂BR̄(p) ⊂ Rm+n is a spherical

cross-section of an area-minimizing cone if p×× T is area-minimizing.
1
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In what follows, given an integer rectifiable current T , we denote by Reg(T ) the subset of
spt(T )\ spt(∂T ) consisting of those points x for which there is a neighborhood U such that
T U is a (costant multiple of) a regular submanifold. Correspondingly, Sing(T ) is the set
spt(T ) \ (spt(∂T ) ∪ Reg(T )). Observe that Reg(T ) is relatively open in spt(T ) \ spt(∂T )
and thus Sing(T ) is relatively closed. The main result of this and the works [10, 9] is then
the following

Theorem 0.2. Let m = 2 and T be as in (a), (b) or (c) of Definition 0.1. Assume in
addition that Σ is of class C3,ε0 (in case (a) and (b)) and ω of class C2,ε0 (in case (b)) for
some positive ε0. Then Sing(T ) is discrete.

Clearly Chang’s result is covered by case (a). As for the case of special Lagrangian cycles
considered by Bellettini and Rivière in [2] observe that they form a special subclass of both
(b) and (c). Indeed these cycles arise as spherical cross-sections of 3-dimensional special
lagrangian cones: as such they are then spherical cross sections of area-minimizing cones
but they are also semicalibrated by a specific smooth form on S5.

Following the Almgren-Chang program, Theorem 0.2 will be established through a suit-
able “blow-up argument”: this argument is presented here but requires several tools. The
first important tool is the theory of multiple-valued functions, for which we will use the
results and terminology of the papers [4, 5]. The second tool is a suitable approximation
result for area-minimizing currents with graphs of multiple valued functions, which for the
case at hand has been established in the preceding note [10]. The last tool is the so-called
“branched center manifold”: this has been constructed in the paper [9]. We note in passing
that all our arguments use heavily the uniqueness of tangent cones for T . This result is
a, by now classical, theorem of White for area-minimizing 2-dimensional currents in the
euclidean space, cf. [15]. Chang extended it to case (a) in the appendix of [3], whereas
Pumberger and Rivière covered case (b) in [12]. A general derivation of these results for
a wide class of almost minimizers has been given in [11]: the theorems in there cover, in
particular, all the cases of Definition 0.1.

The proof of Theorem 0.2 is based, as in [3], on an induction statement, cf. Theorem
1.8 below. Although Theorem 1.8 is already stated in [9], we will recall it in the next
section, where we also show how it implies Theorem 0.2. This and the previous paper [9]
can be hence thought as the two halves in the proof of Theorem 1.8. After introducing
some terminology, in Section 2 we will state the first half in Theorem 2.6 (which is proved
in [9]) and the second half in Theorem 2.8, and we will then show how they fit together
to prove Theorem 1.8. The remaining sections (the biggest portion of this note) are then
dedicated to prove Theorem 2.8.

Acknowledgments The research of Camillo De Lellis and Luca Spolaor has been sup-
ported by the ERC grant RAM (Regularity for Area Minimizing currents), ERC 306247.

1. Preliminaries and the main induction statement

1.1. Basic notation and first main assumptions. For the notation concerning sub-
manifolds Σ ⊂ R2+n we refer to [6, Section 1]. With Br(p) and Br(x) we denote, respec-
tively, the open ball with radius r and center p in R2+n and the open ball with radius r
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and center x in R2. Cr(p) and Cr(x) will always denote the cylinder Br(x) × Rn, where
p = (x, y) ∈ R2 × Rn. We will often need to consider cylinders whose bases are parallel
to other 2-dimensional planes, as well as balls in m-dimensional affine planes. We then
introduce the notation Br(p, π) for Br(p) ∩ (p+ π) and Cr(p, π) for Br(p, π) + π⊥. ei will
denote the unit vectors in the standard basis, π0 the (oriented) plane R

2 × {0} and ~π0 the
2-vector e1∧ e2 orienting it. Given an m-dimensional plane π, we denote by pπ and p⊥

π the
orthogonal projections onto, respectively, π and its orthogonal complement π⊥. For what
concerns integral currents we use the definitions and the notation of [14]. Since π is used
recurrently for 2-dimensional planes, the 2-dimensional area of the unit circle in R

2 will be
denoted by ω2.

By [10, Lemma 1.1] in case (b) we can assume, without loss of generality, that the
ambient manifold Σ coincides with the euclidean space R2+n. In the rest of the paper we
will therefore always make the following

Assumption 1.1. T is an integral current of dimension 2 with bounded support and it
satisfies one of the three conditions (a), (b) or (c) in Definition 0.1. Moreover

• In case (a), Σ ⊂ R2+n is a C3,ε0 submanifold of dimension 2 + n̄ = 2+ n− l, which
is the graph of an entire function Ψ : R2+n̄ → Rl and satisfies the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0, (1.1)

where c0 is a positive (small) dimensional constant and ε0 ∈]0, 1[.
• In case (b) we assume that Σ = R2+n and that the semicalibrating form ω is C2,ε0.
• In case (c) we assume that T is supported in Σ = ∂BR(p0) for some p0 with
|p0| = R, so that 0 ∈ ∂BR(p0). We assume also that T0∂BR(p0) is R

2+n−1 (namely
p0 = (0, . . . , 0,±|p0|) and we let Ψ : R2+n−1 → R be a smooth extension to the
whole space of the function which describes Σ in B2(0). We assume then that (1.1)
holds, which is equivalent to the requirement that R−1 be sufficiently small.

In addition, since the conclusion of Theorem 0.2 is local, by [11, Proposition 0.4] we can
also assume to be always in the following situation.

Assumption 1.2. In addition to Assumption 1.1 we assume the following:

(i) ∂T C2(0, π0) = 0;
(ii) 0 ∈ spt(T ) and the tangent cone at 0 is given by Θ(T, 0) Jπ0K where Θ(T, 0) ∈

N \ {0};
(iii) T is irreducible in any neighborhood U of 0 in the following sense: it is not possible

to find S, Z non-zero integer rectifiable currents in U with ∂S = ∂Z = 0 (in U),
T = S + Z and spt(S) ∩ spt(Z) = {0}.

In order to justify point (iii), observe that we can argue as in the proof of [11, Theorem
3.1]: assuming that in a certain neighborhood U there is a decomposition T = S + Z as
above, it follows from [11, Proposition 2.2] that both S and Z fall in one of the classes
of Definition 0.1. In turn this implies that Θ(S, 0),Θ(Z, 0) ∈ N \ {0} and thus Θ(S, 0) <
Θ(T, 0). We can then replace T with either S or Z. Let T1 = S and argue similarly if it
is not irreducibile: obviously we can apply one more time the argument above and find a
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T2 which satisfies all the requirements and has 0 < Θ(T2, 0) < Θ(T1, 0). This process must
stop after at most N = Θ(T, 0) steps: the final current is then necessarily irreducible.

1.2. Branching model. We next introduce an object which will play a key role in the rest
of our work, because it is the basic local model of the singular behavior of a 2-dimensional
area-minimizing current: for each positive natural number Q we will denote by BQ,ρ the
flat Riemann surface which is a disk with a conical singularity, in the origin, of angle 2πQ
and radius ρ > 0. More precisely we have

Definition 1.3. BQ,ρ is topologically an open 2-dimensional disk, which we identify with
the topological space {(z, w) ∈ C

2 : wQ = z, |z| < ρ}. For each (z0, w0) 6= 0 in BQ,ρ we
consider the connected component D(z0, w0) of BQ,ρ ∩ {(z, w) : |z − z0| < |z0|/2} which
contains (z0, w0). We then consider the smooth manifold given by the atlas

{(D(z, w)), (x1, x2)) : (z, w) ∈ BQ,ρ \ {0}} ,
where (x1, x2) is the function which gives the real and imaginary part of the first complex
coordinate of a generic point of BQ,ρ. On such smooth manifold we consider the following
flat Riemannian metric: on each D(z, w) with the chart (x1, x2) the metric tensor is the
usual euclidean one dx2

1 + dx2
2. Such metric will be called the canonical flat metric and

denoted by eQ. The coordinates (x1, x2) = z will be called standard flat coordinates.

When Q = 1 we can extend smoothly the metric tensor to the origin and we obtain
the usual euclidean 2-dimensional disk. For Q > 1 the metric tensor does not extend
smoothly to 0, but we can nonetheless complete the induced geodesic distance on BQ,ρ in
a neighborhood of 0: for (z, w) 6= 0 the distance to the origin will then correspond to |z|.
The resulting metric space is a well-known object in the literature, namely a flat Riemann
surface with an isolated conical singularity at the origin (see for instance [16]). Note that
for each z0 and 0 < r ≤ min{|z0|, ρ− |z0|} the set BQ,ρ ∩ {|z − z0| < r} consists then of Q
nonintersecting 2-dimensional disks, each of which is a geodesic ball of BQ,ρ with radius

r and center (z0, wi) for some wi ∈ C with wQ
i = z0. We then denote each of them by

Br(z0, wi) and treat it as a standard disk in the euclidean 2-dimensional plane (which is
correct from the metric point of view). We use however the same notation for the distance
disk Br(0), namely for the set {(z, w) : |z| < r}, although the latter is not isometric to
the standard euclidean disk. Since this might be create some ambiguity, we will use the
specification R2 ⊃ Br(0) when referring to the standard disk in R2.

1.3. Admissible Q-branchings. When one of (or both) the parameters Q and ρ are clear
from the context, the corresponding subscript (or both) will be omitted. We will consider
repeatedly functions u defined on B. We will always treat each point of B as an element
of C2, mostly using z and w for the horizontal and vertical complex coordinates. Often C

will be identified with R2 and thus the coordinate z will be treated as a two-dimensional
real vector, avoiding the more cumbersome notation (x1, x2).

Definition 1.4 (Q-branchings). Let α ∈]0, 1[, b > 1, Q ∈ N \ {0} and n ∈ N \ {0}. An
admissible α-smooth and b-separated Q-branching in R2+n (shortly a Q-branching) is the



2-DIMENSIONAL REGULARITY THEORY 5

graph
Gr(u) := {(z, u(z, w)) : (z, w) ∈ BQ,2ρ} ⊂ R

2+n (1.2)

of a map u : BQ,2ρ → Rn satisfying the following assumptions. For some constants Ci > 0
we have

• u is continuous, u ∈ C3,α on BQ,ρ \ {0} and u(0) = 0;
• |Dju(z, w)| ≤ Ci|z|1−j+α ∀(z, w) 6= 0 and j ∈ {0, 1, 2, 3};
• [D3u]α,Br(z,w) ≤ Ci|z|−2 for every (z, w) 6= 0 with |z| = 2r;
• If Q > 1, then there is a positive constant cs ∈]0, 1[ such that

min{|u(z, w)− u(z, w′)| : w 6= w′} ≥ 4cs|z|b for all (z, w) 6= 0. (1.3)

The map Φ(z, w) := (z, u(z, w)) will be called the graphical parametrization of the Q-
branching.

Any Q-branching as in the Definition above is an immersed disk in R2+n and can be given
a natural structure as integer rectifiable current, which will be denoted by Gu. For Q = 1
a map u as in Definition 1.4 is a (single valued) C1,α map u : R2 ⊃ B2ρ(0) → Rn. Although
the term branching is not appropriate in this case, the advantage of our setup is that Q = 1
will not be a special case in the induction statement of Theorem 1.8 below. Observe that
for Q > 1 the map u can be thought as a Q-valued map u : R2 ⊃ Bρ(0) → AQ(R

n), setting
u(z) =

∑

(z,wi)∈B Ju(z, wi)K for z 6= 0 and u(0) = Q J0K. The notation Gr(u) and Gu is

then coherent with the corresponding objects defined in [5] for general Q-valued maps.

1.4. The inductive statement. Before coming to the key inductive statement, we need
to introduce some more terminology.

Definition 1.5 (Horned Neighborhood). Let Gr(u) be a b-separated Q-branching. For
every a > b we define the horned neighborhood Vu,a of Gr(u) to be

Vu,a := {(x, y) ∈ R
2 × R

n : ∃(x, w) ∈ BQ,2ρ with |y − u(x, w)| < cs|x|a} , (1.4)

where cs is the constant in (1.3).

Definition 1.6 (Excess). Given an m-dimensional current T in Rm+n with finite mass, its
excess in the ball Br(x) and in the cylinder Cr(p, π

′) with respect to the m-plane π are

E(T,Br(p), π) := (2ωm rm)−1

∫

Br(p)

|~T − ~π|2 d‖T‖ (1.5)

E(T,Cr(p, π
′), π) := (2ωm rm)−1

∫

Cr(p,π′)

|~T − ~π|2 d‖T‖ . (1.6)

For cylinders we omit the third entry when π = π′, i.e. E(T,Cr(p, π)) := E(T,Cr(p, π), π).
In order to define the spherical excess we consider T as in Assumption 1.1 and we say that
π optimizes the excess of T in a ball Br(x) if

• In case (b)

E(T,Br(x)) := min
τ

E(T,Br(x), τ) = E(T,Br(x), π); (1.7)
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• In case (a) and (c) π ⊂ TxΣ and

E(T,Br(x)) := min
τ⊂TxΣ

E(T,Br(x), τ) = E(T,Br(x), π) . (1.8)

Note in particular that, in case (a) and (c), E(T,Br(x)) differs from the quantity defined
in [8, Definition 1.1], where, although Σ does not coincide with the ambient euclidean space,
τ is allowed to vary among all planes, as in case (b). Thus a notation more consistent with
that of [8] would be, in case (a) and (c), EΣ(T,Br(x)). However, the difference is a minor
one and we prefer to keep our notation simpler.

Our main induction assumption is then the following

Assumption 1.7 (Inductive Assumption). T is as in Assumption 1.1 and 1.2. For some
constants Q̄ ∈ N \ {0} and 0 < α < 1

2Q̄
there is an α-admissible Q̄-branching Gr(u) with

u : BQ̄,2 → Rn such that

(Sep) If Q̄ > 1, u is b-separated for some b > 1; a choice of some b > 1 is fixed also in the
case Q̄ = 1, although in this case the separation condition is empty.

(Hor) spt(T ) ⊂ Vu,a ∪ {0} for some a > b;
(Dec) There exist γ > 0 and a Ci > 0 with the following property. Let p = (x0, y0) ∈

spt(T ) ∩C√
2(0) and 4d := |x0| > 0, let V be the connected component of Vu,a ∩

{(x, y) : |x − x0| < d} containing p and let π(p) be the plane tangent to Gr(u) at
the only point of the form (x0, u(x0, wi)) which is contained in V . Then

E(T V,Bσ(p), π(p)) ≤ C2
i d

2γ−2σ2 ∀σ ∈
[
1
2
d(b+1)/2, d

]
. (1.9)

The main inductive step is then the following theorem, where we denote by Tp,r the
rescaled current (ιp,r)♯T , through the map ιp,r(q) := (q − p)/r.

Theorem 1.8 (Inductive statement). Let T be as in Assumption 1.7 for some Q̄ = Q0.
Then,

(a) either T is, in a neighborhood of 0, a Q multiple of a Q̄-branching Gr(v);
(b) or there are r > 0 and Q1 > Q such that T0,r satisfies Assumption 1.7 with Q̄ = Q1.

Theorem 0.2 follows then easily from Theorem 1.8 and [11].

1.5. Proof of Theorem 0.2. As already mentioned, without loss of generality we can
assume that Assumption 1.1 holds, cf. [11, Lemma 1.1] (the bounds on A and Ψ can be
achieved by a simple scaling argument). Fix now a point p in spt(T ) \ spt(∂T ). Our aim
is to show that T is regular in a punctured neighborhood of p. Without loss of generality
we can assume that p is the origin. Upon suitably decomposing T in some neighborhood
of 0 we can easily assume that (I) in Assumption 1.7 holds, cf. the argument of Step 4
in the proof of [11, Theorem 3.1]. Thus, upon suitably rescaling and rotating T we can
assume that π0 is the unique tangent cone to T at 0, cf. [11, Theorem 3.1]. In fact, by
[11, Theorem 3.1] T satisfies Assumption 1.7 with Q̄ = 1: it suffices to chose u ≡ 0 as
admissible smooth branching. If T were not regular in any punctured neighborhood of 0,
we could then apply Theorem 1.8 inductively to find a sequence of rescalings T0,ρj with
ρj ↓ 0 which satisfy Assumption 1.7 with Q̄ = Qj for some strictly increasing sequence of
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integers. It is however elementary that the density Θ(0, T ) bounds Qj from above, which
is a contradiction.

2. The branched center manifold and the blow-up theorem

From now on we fix T satisfying Assumption 1.7. Observe that, without loss of generality,
we are always free to rescale homothetically our current T with a factor larger than 1 and
ignore whatever portion falls outside C2(0). We will do this several times, with factors
which will be assumed to be sufficiently large. Hence, if we can prove that something holds
in a sufficiently small neighborhood of 0, then we can assume, withouth loss of generality,
that it holds on C2. For this reason we can assume that the constants Ci in Definition 1.4
and Assumption 1.7 is as small as we want. In turns this implies that there is a well-defined
orthogonal projection P : Vu,a ∩C1 → Gr(u) ∩C2, which is a C2,α map. We next recall
[9, Lemma 2.1]:

Lemma 2.1. Let T and u be as in Assumption 1.7 for some Q̄. Then the nearest point
projection P : Vu,a ∩ C1 → Gr(u) is a well-defined C2,α map. In addition there is Q ∈
N\{0} such that Θ(0, T ) = QQ̄ and the unique tangent cone to T at 0 is QQ̄ Jπ0K. Finally,
after possibly rescaling T , Θ(p, T ) ≤ Q for every p ∈ C2 \ {0} and, for every x ∈ B2(0),
each connected component of (x× Rn) ∩Vu,a contains at least one point of spt(T ).

Since we will assume during the rest of the paper that the above discussion applies, we
summarize the relevant conclusions in the following

Assumption 2.2. T satisfies Assumption 1.7 for some Q̄ and with Ci sufficiently small.
Q ≥ 1 is an integer, Θ(0, T ) = QQ̄ and Θ(p, T ) ≤ Q for all p ∈ C2 \ {0}.

The overall plan to prove Theorem 1.8 is then the following:

(CM) We construct first a branched center manifold, i.e. a second admissible smooth
branching ϕ on BQ̄, and a corresponding Q-valued map N defined on the normal
bundle of Gr(ϕ), which approximates T with a very high degree of accuracy (in
particular more accurately than u) and whose average η ◦N is very small;

(BU) Assuming that alternative (a) in Theorem 1.8 does not hold, we study the asymp-
totic behavior of N around 0 and use it to build a new admissible smooth branching
v on some BkQ̄ where k ≥ 2 is a factor of Q: this map will then be the one sought
in alternative (b) of Theorem 1.8 and a suitable rescaling of T will lie in a horned
neighborhood of its graph.

The first part of the program is the one achieved in [9], whereas the second part will
be completed in this note. Note that, when Q = 1, from (BU) we will conclude that
alternative (a) necessarily holds: this will be a simple corollary of the general case, but we
observe that it could also be proved resorting to the classical Allard’s regularity theorem.

2.1. Smallness condition. In several occasions we will need that the ambient manifold
Σ is suitably flat and that the excess of the current T is suitably small. This can, however,
be easily achieved after scaling. More precisely we recall [9, Lemma 2.3].
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Lemma 2.3. Let T be as in the Assumptions 1.7 and 2.2. After possibly rescaling, rotating
and modifying Σ outside C2(0) we can assume that, in case (a) and (c) of Definition 0.1,

(i) Σ is a complete submanifold of R2+n;
(ii) T0Σ = R2+n̄ ×{0} and, ∀p ∈ Σ, Σ is the graph of a C3,ε0 map Ψp : TpΣ → (TpΣ)

⊥.

Under these assumptions, we denote by c and m0 the following quantities

c := sup{‖DΨp‖C2,ε0 : p ∈ Σ} in the cases (a) and (c) of Definition 0.1 (2.1)

c := ‖dω‖C1,ε0 in case (b) of Definition 0.1 (2.2)

m0 := max
{
c
2,E(T,C2, π0), C

2
i , c

2
s

}
, (2.3)

where Ci and cs are the constants appearing in Definition 1.4 and Assumption 1.7. Then,
for any ε2 > 0, after possibly rescaling the current by a large factor, we can assume

m0 ≤ ε2 . (2.4)

In order to carry on the plan outlined in the previous subsection, it is convenient to
use a different parametrization of Q-branchings. If we remove the origin, any admissible
Q-branching is a Riemannian submanifold of R2+n \ {0}: this gives a Riemannian tensor
g := Φ♯e (where e denotes the euclidean metric on R2+n) on the puntured disk BQ,2ρ \{0}.
Note that in (z, w) the difference between the metric tensor g and the canonical flat metric
eQ can be estimated by (a constant times) |z|2α: thus, as it happens for the canonical flat
metric eQ, when Q > 1 it is not possible to extend the metric g to the origin. However,
using well-known arguments in differential geometry, we can find a conformal map from
BQ,r onto a neighborhood of 0 which maps the conical singularity of BQ,r in the conical
singularity of the Q-branching. In fact, we need the following accurate estimates for such
a map, cf. [9, Proposition 2.4]:

Proposition 2.4 (Conformal parametrization). Given an admissible b-separated α-smooth
Q-branching Gr(u) with α < 1/(2Q) there exist a constant C0(Q,α) > 0, a radius r > 0
and functions Ψ : BQ,r → Gr(u) and λ : BQ,r → R+ such that

(i) Ψ is a homeomorphism of BQ,r with a neighborhood of 0 in Gr(u);
(ii) Ψ ∈ C3,α(BQ,r \ {0}), with the estimates

|Dl
(
Ψ(z, w)− (z, 0)

)
| ≤C0Ci|z|1+α−l for l = 0, . . . , 3, z 6= 0 , (2.5)

[D3Ψ]α,Br(z,w) ≤C0Ci|z|−2 for z 6= 0 and r = |z|/2 ; (2.6)

(iii) Ψ is a conformal map with conformal factor λ, namely, if we denote by e the
ambient euclidean metric in R2+n and by eQ the canonical euclidean metric of BQ,r,

g := Ψ♯e = λ eQ on BQ,r \ {0}. (2.7)

(iv) The conformal factor λ satisfies

|Dl(λ− 1)(z, w)| ≤C0Ci|z|2α−l for l = 0, 1, . . . , 2 (2.8)

[D2λ]α,Br(z,w) ≤C0Ci|z|α−2 for z 6= 0 and r = |z|/2 . (2.9)
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Definition 2.5. A map Ψ as in Proposition 2.4 will be called a conformal parametrization
of an admissible Q-branching.

2.2. The center manifold and the approximation. We are now ready to state the
two “halves” of Theorem 1.8. The first one is [9, Theorem 2.6], which we recall here for
the reader’s convenienve.

Theorem 2.6 (Center Manifold Approximation). Let T be as in Assumptions 1.7 and
2.2. Then there exist η0, γ0, r0, C > 0, b > 1, an admissible b-separated γ0-smooth Q̄-
branching M, a corresponding conformal parametrization Ψ : BQ̄,2 → M and a Q-valued
map N : BQ̄,2 → AQ(R

2+n) with the following properties:

(i) Q̄Q = Θ(T, 0) and

|D(Ψ(z, w)− (z, 0))| ≤Cm
1/2
0 |z|γ0 (2.10)

|D2Ψ(z, w)|+ |z|−1|D3Ψ(z, w)| ≤Cm
1/2
0 |z|γ0−1 ; (2.11)

in particular, if we denote by AM the second fundamental form of M\ {0},
|AM(Ψ(z, w))|+ |z|−1|DMAM(Ψ(z, w))| ≤ Cm

1/2
0 |z|γ0−1 .

(ii) N i(z, w) is orthogonal to the tangent plane, at Ψ(z, w), to M.
(iii) If we define S := T0,r0, then spt(S) ∩ C1 \ {0} is contained in a suitable horned

neighborhood of the Q̄-branching, where the orthogonal projection P onto it is well-
defined. Moreover, for every r ∈]0, 1[ we have

‖N |Br‖0 + sup
p∈spt(S)∩P−1(Ψ(Br))

|p−P(p)| ≤ Cm
1/4
0 r1+

γ0/2 . (2.12)

(iv) If we define

D(r) :=

∫

Br

|DN |2 and H(r) :=

∫

∂Br

|N |2 ,

F(r) :=

∫ r

0

H(t)

t2− γ0
dt and Λ(r) := D(r) + F(r) ,

then the following estimates hold for every r ∈]0, 1[:
Lip(N |Br) ≤Cmin{Λη0(r),mη0

0 rη0} (2.13)

m
η0
0

∫

Br

|z|γ0−1|η ◦ N (z, w)| ≤C Λη0(r)D(r) + C F(r) . (2.14)

(v) Finally, if we set

F (z, w) :=
∑

i

JΨ(z, w) + N i(z, w)K ,

then

‖S −TF ‖
(
P−1(Ψ(Br))

)
≤CΛη0(r)D(r) + C F(r) . (2.15)
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The second main step is the analysis of the asymptotic behaviour of N around the origin,
which is the main focus of this paper.

Remark 2.7. In order to state it, we agree to define W 1,2 functions on B in the following
fashion: removing the origin 0 fromB we have a C3

loc (flat) Riemannian manifold embedded
in R4 and we can define W 1,2 maps on it following [4]. Alternatively we can use the
conformal parametrization W : R2 = C → BQ̄ given by W(z) = (zQ̄, z) and agree that
u ∈ W 1,2(BQ̄) if u ◦ W is in W 1,2(R2). Since discrete sets have zero 2-capacity, it is
immediate to verify that these two definitions are equivalent.

In a similar fashion, we will ignore the origin when integrating by parts Lipschitz vector
fields, treating BQ̄ as a C1 Riemannian manifold. It is straightforward to show that our
assumption is correct, for instance removing a disk of radius ε centered at the origin,
integrating by parts and then letting ε ↓ 0.

Theorem 2.8 (Blowup Analysis). Under the assumptions of Theorem 2.6, the following
dichotomy holds:

(i) either there exists s > 0 such that N |Bs ≡ Q J0K;
(ii) or there exist constants I0 > 1, a0, r̄, C > 0 and an I0-homogeneous nontrivial

Dir-minimizing function g : BQ̄ → AQ(R
2+n) such that

– η ◦ g ≡ 0,
– g =

∑

i J(0, ḡi, 0)K, where ḡi(x) ∈ Rn̄ and (0, ḡi(x), 0) ∈ R2 × Rn̄ × Rl,
– and the following estimates hold:

G
(

N (z, w), g(z, w)
)
≤ C|z|I0+a0 ∀ (z, w) ∈ BQ, |z| < r̄, (2.16)

∫

Br+ρ\Br−ρ

|DN |2 ≤ C r2I0+a0 + C r2I0−1 ρ ∀ 4 ρ ≤ r < 1, (2.17)

H(r) ≤ C rD(r) ∀ r < 1. (2.18)

Remark 2.9. Note that, when Q̄ = Θ(T, 0), we necessarily have Q = 1 and the sec-
ond alternative is excluded. In particular we conclude that T coincides with JMK in a
neighborhood of 0 and thus it is a regular submanifold in a punctured neighborhood of 0.

Remark 2.10. By a simple dyadic argument it follows from (2.17) and (2.18) that
∫

Br

|DN |2 ≤ C r2I0 and F(r) ≤ C r2I0+γ0 ∀ r < 1. (2.19)

Below we show how to conclude Theorem 1.8 from Theorem 2.8. The remaining part of
the paper is dedicated to the proof of the latter, which will be split in six sections each
corresponding to one of the following steps.

(i) In Section 3 we will deduce an almost minimizing property for the map N in terms
of its Dirichlet energy.

(ii) In Section 4 we will apply the almost minimizing property and compare the Dirichlet
energy of N with that of a suitable harmonic extension of its boundary value on
any given ball.
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(iii) In Section 5 we use the comparison above and a first variation argument to derive
a suitable Poincaré-type inequality for N .

(iv) In Section 6 we compute again the first variations of the Dirichlet energy of N and
use the Poincaré inequality to bound efficiently several error terms.

(v) Using the latter bounds, in Section 7 we will prove an almost monotonicity property
for the frequency function and the existence and boundedness of its limit, which is
indeed the number I0 of Theorem 2.8. The almost minimality of N will then allow
us to conclude an exponential rate of decay to this limit.

(vi) From the decay of the previous step we will capture in Section 8 the asymptotic
behaviour of N and show the existence of the map g of Theorem 2.8.

The overall strategy follows the ideas and some of the computations in [3]. However several
adjustments are needed to carry on the proof in the cases (b) and (c) of Definition 0.1. In
particular in Section 7 we need to introduce a suitable modification of the usual frequency
function to handle case (b).

2.3. Proof of the inductive step. In the next sections we will prove Theorem 2.8. We
start observing that if case (a) of Theorem 1.8 does not hold, then we are necessarily in
case (ii) of Theorem 2.8. Therefore we only need to prove that Theorem 2.8(ii) implies
Theorem 1.8(b).

We divide the proof in different steps.

Step 1. For a reason which will become clear later, it is convenient to slightly modify
the map g to a multivalued map n(z, w) =

∑

i Jni(z, w)K in such a way that ni(z, w) is
orthogonal to M at Ψ(z, w). To achieve this it suffices to project gi(z, w) = (0, ḡi(z, w), 0)
on the normal bundle. Observe that, by the estimates on |AM| and Ψ, we have

|gi(z, w)− ni(z, w)| ≤CCi|z|γ0 |gi(z, w)| , (2.20)

|Dn|(z, w) ≤|Dg|(z, w) + CCi|z|γ0−1|g|(z, w) . (2.21)

We introduce the function H : BQ̄ → AQ(R
2+n) given by

H(z, w) =

Q
∑

i=1

JHi(z, w)K :=
Q
∑

i=1

JΨ(z, w) + ni(z, w)K .

Note that, since g is I0-homogeneous and Dir-minimizer, by [4, Proposition 5.1] there is
a constant C such that

|gi(z, w)− gj(z, w)| ≥ 2C |z|I0 whenever gi(z, w) 6= gj(z, w) . (2.22)

In fact [4, Proposition 5.1] is stated for maps with domain C = R
2. However, if we define

the map W : C → BQ̄,∞ as W(z) = (zQ̄, z), by the conformality of W it is easy to check
that g ◦W is Dir-minimizer and I0Q homogeneous.

By (2.20) and (2.22), provided z is small enough we have

|Hi(z, w)−Hj(z, w)| ≥ C |z|I0 whenever Hi(z, w) 6= Hj(z, w). (2.23)
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Let ā ∈]0, a0[ be a constant to be fixed momentarily and ζ := I0 + ā/2 > 1. Set

VH,ζ :=
{
Hi(z, w) + p ∈ R

2+n : |p| < |z|ζ , i = 1, . . . , Q
}
.

We claim that there exists s > 0 such that spt(T ) ∩Bs \ {0} ⊂ VH,ζ.
In order to prove this claim, we distinguish two cases. First we consider any point

p ∈ spt(T ) ∩ spt(TF ) \ {0}. In this case p = Ψ(z, w) + N i(z, w) for some (z, w) ∈
BQ̄ \ {0} and for some i = 1, . . . , Q. Without loss of generality, by (2.16) we can assume
|N i(z, w)− gi(z, w)| ≤ C|z|I0+ā, i.e.

|p−Hi(z, w)| = |N i(z, w)− ni(z, w)| ≤ |N i(z, w)− gi(z, w)|+ |gi(z, w)− ni(z, w)|
≤ C|z|I0+ā + C|z|γ0+I0 , (2.24)

which in particular implies spt(T ) ∩ spt(TF ) ∩Bs ⊂ VH,ζ if s is sufficiently small and we
impose ā

2
< γ0.

For the second case we consider a point p ∈ spt(T )\spt(TF ) and assume by contradiction
that p 6∈ VH,ζ. In particular, in view of (2.24) we have that

B := B |z|ζ

2

(p) ∩ spt(TF ) = ∅ (2.25)

if |z| is sufficiently small. By the monotonicity formula we know that ‖T‖(B) ≥ C |z|2ζ ;
nevertheless since B ⊂ P−1(B2|z| \B|z|/2), (2.25) implies ‖T‖(B) ≤ ‖T −TF ‖(B) and from
(2.15) and (2.19) we conclude ‖T‖(B) ≤ C |z|2I0+2κ with κ = min{2 η0 I0, γ0}. This gives
a contradiction if ā < 2κ.

Step 2. From the previous step we can infer that g is a constant multiple of an irreducible
function, namely there exists Q′ > 0 such that card(g(z, w)) = Q′ for every (z, w) 6= (0, 0)
and there exists a continuous map h : BQ̄Q′ → R2+n such that

g(z, w) =
Q

Q′

∑

z̃=z, w̃Q′=w

Jh(z̃, w̃)K . (2.26)

If this is not the case, by [4, Proposition 5.1] we can decompose g in the superposition

of irreducible functions, i.e. there exists a unique decomposition g =
∑J

j=1 kjgj where

gj : BQ → Aqj(R
n) are Dir-minimizing I0-homogeneous functions, for some choice of

positive integers J, kj, qj such that
∑J

j=1 kjqj = Q.

Denoting by Hj the corresponding maps

Hj(z, w) :=

qj∑

l=1

q
Ψ(z, w) + (nj)l(z, w)

y

and by VHj ,ζ the corresponding horned neighborhoods

VHj ,ζ :=
{
(Hj)l(z, w) + p ∈ R

2+n : |p| < |z|ζ , l = 1, . . . , qj
}
,

it follows from (2.23) that the closures of the Vζ,Hi
intersect only at the origin. Setting Ti :=

T Vζ,Hi
, we infer that T =

∑

i Ti with spt(Ti) ∩ spt(Tj) = {0}, against the irreducibility
of T . Note that, since η ◦ g = 0 it also follows that Q′ > 1.
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Having established (2.26), let us define Θ : BQ̄Q′ → R2+n as

Θ(z̃, w̃) := Ψ(z̃, w̃Q′

) + hn(z̃, w̃) ∀ (z̃, w̃) ∈ BQ̄Q′ ,

where hn(z̃, w̃) is the projection of h(z̃, w̃) on the space normal toM at the pointΨ(z̃, w̃Q′
).

It follows that Im(H) = Im(Θ) is an admissible Q̄Q′-branching (the Hölder regularity for
the graphical parametrization follows from the fact that I0 > 1). Moreover, from the
homogeneity of g we easily infer that Im(Θ) is I0-separated (for a suitable constant cs).
Note that for ζ ′ := I0 + ā/4 and s sufficiently small VH,ζ ∩Bs ⊂ VΘ,ζ′ ∩Bs.

Step 3. Finally we prove the condition (Dec) of Assumption 1.7. Let (z, w) ∈ BQ̄ with

0 < |z| <
√
2, let V be the connected component of VΘ,ζ′ ∩ {(x, y) : |x − z| < d} with

d := |z|/4 containing Θ(z, w), and p ∈ spt(T )∩ V with coordinates p = (z, y). Denote by π
the oriented two-vector for Im(Θ) at Θ(z, w), and consider ρ ∈ [1

2
d(I0 + 1)/2, d].

Since Bρ(p) ∩ spt(T ) ⊂ P−1(Ψ(B|z|+2ρ \B|z|−2ρ)), we start estimating as follows
∫

Bρ(p)

|~T − ~π|2 d‖T V ‖ ≤
∫

Bρ(p)∩V
|~TF − ~π|2 d‖TF ‖+ ‖T −TF ‖(p−1(B|x0|+2ρ))

(2.15)

≤
∫

Bρ(p)∩V
|~TF − ~π|2 d‖TF ‖+ C |z|2I0+2κ. (2.27)

Next, note that for |z| small enough P(Bρ(p) ∩VΘ,ζ′) ⊂ Ψ(B2ρ(z, w)).
We can consider the set of indices A ⊂ {1, . . . , Q} such that Fi(z, w) ∈ V for i ∈ A and

estimate as follows
∫

Bρ(p)∩V
|~TF − ~π|2 d‖TF ‖ ≤ C

∑

i∈A

∫

B2ρ(z,w)

|~TFi(ζ,ω) − ~TΘ(ζ,ω)|2 dζ + C ρ2 Lip(DΘ|B2ρ(z,w))
2

≤ C
∑

i∈A

∫

B2ρ(z,w)

|~TFi(ζ,ω) − ~TΨ(ζ,ω)|2 dζ

+ C

∫

B2ρ(z,w)

|~TΨ(ζ,ω) − ~TΘ(ζ,ω)|2 dζ + C ρ4 |z|2θ−2, (2.28)

where θ := min{γ0, I0 − 1} and we used that |D2Θ|(z, w) ≤ C |z|θ−1.
We can finally use the computation of the excess in curvilinear coordinates in [5, Propo-

sition 3.4] to get

∑

i

∫

B2ρ(z,w)

|~TFi(ζ,ω) − ~TΨ(ζ,ω)|2 ≤ C

∫

B2ρ(z,w)

(
|DN |2 + |ζ |2γ0−2|N |2

)

(2.19)

≤ C

∫

B|z|+2ρ\B|z|−2ρ

|DN |2 + C |z|2I0+2γ0 (2.29)

(2.17)

≤ C |z|2I0+a0 + C |z|2I0−1 ρ , (2.30)
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and similarly
∫

B2ρ(z,w)

|~TΘ(ζ,ω) − ~TΨ(ζ,ω)|2 ≤ C

∫

B2ρ(z,w)

(
|Dn|2 + |ζ |2γ0−2|n|2

)

≤ C

∫

B2ρ(z,w)

(
|Dg|2 + |ζ |2γ0−2|g|2

)

≤ C |z|2I0−2ρ2 + C |z|2I0+2γ0 (2.31)

(observe that, in order to apply [5, Proposition 3.4] we need that n takes value into the
normal bundle).

Collecting all the estimates together, we have that there exists a suitable constant ̟
such that
∫

Bρ(p)

|~T − ~π|2 d‖T V ‖ ≤ C |z|2I0+2̟ + C ρ |z|2I0−1 + C ρ4 |z|2̟−2 ≤ |z|γ−2ρ4, (2.32)

where the last inequality is easily verified for γ > 0 and |z| small enough. This shows (Dec)
in Assumption 1.7 and completes the proof.

3. Dirichlet almost minimizing property

The normal approximation N inherits from T an almost minimizing property for the
Dirichlet energy, where the errors involved are in fact expressed in terms of some specific
norms of N itself and of its competitors.

For techincal reasons we introduce the maps F :=
∑Q

i=1 Jp+Ni(p)K, whereN := N ◦Ψ−1.
In order to state the almost minimizing property of N we introduce an appropriate notion
of competitor.

Definition 3.1. A Lipschitz map L : Br → AQ(R
n+2) is called a competitor for N in the

ball Br if

(a) L|∂Br = N |∂Br ;

(b) spt(G(z, w)) ⊂ Σ for all (z, w) ∈ Br, where G(z, w) :=
∑Q

j=1 JΨ(z, w) + Lj(z, w)K.
We are now ready to state the almost minimizing property for N . We use the notation

pTpΣ for the orthogonal projection on the tangent space to Σ at p. We recall that, given
our choice of coordinates, pT0Σ is the projection on R2+n̄ × {0}. Since this projection will
be used several times, we will denote it by p0. By the C3,ε regularity of Σ, there exists a
map Ψ0 ∈ C3,ε(R2+n̄,Rl) such that

Ψ0(0) = 0 , DΨ0(0) = 0 and Gr(Ψ0) = Σ .

Next, for each function L satisfying Condition (b) in Definition 3.1 we consider the map
L̄ := p0 ◦ L , which is a multivalued L̄ : B → AQ(R

2+n̄). We observe that it is possible to
determine L from L̄ . In particular, fix coordinates (ξ, η) ∈ R2+n̄ × Rl and let L =

∑
JLiK,

L̄ =
∑

JL̄iK, where L̄i = p0 ◦ Li. Then the formula relating Li and L̄i is

Li(z, w) =
(

L̄i(z, w),Ψ0

(
p0(Ψ(z, w)) + L̄i(z, w)

)
−Ψ0(p0(Ψ(z, w))

)
. (3.1)
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Proposition 3.2. There exists a constant C3.2 > 0 such that the following holds. If
r ∈ (0, 1) and L : Br → AQ(R

2+n) is a Lipschitz competitor for N with ‖L‖∞ ≤ r and
Lip(L) ≤ C−1

3.2 , then
∫

Br

|DN |2 ≤ (1 + C3.2 r)

∫

Br

|DL̄|2 + C3.2 Err1(N , Br) + C3.2 Err2(L , Br) + C3.2 r
2D′(r) ,

(3.2)

where L̄ := p0 ◦ L and the the error terms Err1(N , Br), Err2(L , Br) are given by the
following expressions:

Err1(N , Br) = Λη0(r)D(r) + F(r) +H(r) +m
1/2
0 r1+γ0

∫

∂Br

|η ◦ N | (3.3)

and

Err2(L , Br) = m
1/2
0

∫

Br

|z|γ0−1|η ◦ L| . (3.4)

For the proof of Proposition 3.2 we consider separately the three cases:

(a) T is mass minimizing;
(b) T is semicalibrated;
(c) T is the cross-section of a mass minimizing three-dimensional cone.

For notational convenience we set L := L ◦Ψ−1, G := G ◦Ψ−1.
Observe also that, by Lemma A.1 and A.2, it is enough to prove that

∫

Br

|DN |2 ≤ (1+C3.2 r)

∫

Br

|DL|2+C Err1(N , Br)+C Err2(L , Br)+
C

r

∫

Br

|L|2+Cr2D′(r) .

(3.5)
Indeed Lemma A.2 implies that
∫

Br

|DL|2 ≤(1 + Cr)

∫

Br

|DL̄|2 + Cr

∫

∂Br

|L̄|2 ≤ (1 + Cr)

∫

Br

|DL̄|2 + Cr

∫

∂Br

|L|2

=(1 + Cr)

∫

Br

|DL̄|2 + Cr

∫

∂Br

|N |2 ≤ (1 + Cr)

∫

Br

|DL̄|2 + C Err1(N , Br) ,

whereas Lemma A.1 implies

1

r

∫

Br

|L|2 ≤Cr

∫

Br

|DL|2 + C

∫

∂Br

|L|2 ≤ Cr

∫

Br

|DL̄|2 + C Err1(N , Br) .

3.1. Proof of Proposition 3.2 case (a): T mass minimizing. We fix L , L̄, L, G , Ḡ

and G as above. Let us set

Z := T −TF |Br
+TG . (3.6)
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Since F |∂Br = G |∂Br , from [5] it follows that ∂(TG − TF |Br
) = 0. Moreover spt(Z) ⊂ Σ

and therefore we must have M(T ) ≤ M(Z). Taking into account (2.15), we conclude that

M(TF |Br
) ≤ M(T p−1(Ψ(Br))) + ‖T −TF |Br

‖(p−1(Ψ(Br)))

≤ M(TG) + 2 ‖T −TF |Br
‖(p−1(Ψ(Br)))

≤ M(TG) + C Err1(N , Br) . (3.7)

Observe now that TF |Br
= TF |Ψ(Br)

and we can use the Taylor expansion in [5] to compute:

M(TF |Br
) ≥ QH2(Ψ(Br)) +

1

2

∫

Ψ(Br)

|DN |2 −Q

∫

Ψ(Br)

〈η ◦N,HM〉

− C

∫

Ψ(Br)

(

|AM|2|N |2 + |DN |4
)

, (3.8)

where HM denotes the mean curvature vector of M. Note that in order to apply the Taylor
expansion in [5] we need the manifold M to be C2, with an apriori bound on the C2 norm.
However, if we take TF Br \Br/2 and rescale by a factor 1/r, the corresponding rescaled
current, map and manifold fall under the assumptions of the Taylor expansion in [5]. We
can then scale back to find the corresponding inequalities for T Br \ Br/2 and sum over
dyadic annuli to conclude (3.8).

Using the conformality of Ψ we conclude

∫

Ψ(Br)

|DN |2 =
∫

Br

|DN |2 ,

As for the other terms, we recall

∫

Ψ(Br)

|〈η ◦N,HM〉| ≤ Cm
1/2
0

∫

Br

|η ◦ N |
(2.14)

≤ CErr1(N , Br) , (3.9)

∫

Ψ(Br)

|DN |4 ≤ CLip(N |Br)
2

∫

Br

|DN |2
(2.13)

≤ CErr1(N , Br) , (3.10)

∫

Ψ(Br)

|AM|2|N |2 ≤ Cm0

∫

Br

|z|2γ0−2|N |2 = Cm0

∫ r

0

H(s)

s2−2γ0
ds ≤ CErr1(N , Br) . (3.11)

Combining the latter estimates with (3.6) and (3.7) we achieve

1

2

∫

Br

|DN |2 ≤ CErr1(N , Br) +M(TG)−QH2(Ψ(Br(x)) . (3.12)
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Next, fix an orthonormal frame ξ1, ξ2 on Br and, using the area formula from [5], compute

M(TG) =

∫

Ψ(Br)

∑

i

|(ξ1 +DLi · ξ1) ∧ (ξ2 +DLi · ξ2)|

≤1

2

∫

Ψ(Br)

∑

i

(
|ξ1 +DLi · ξ1)|2 + |ξ2 +DLi · ξ2|2

)

=QH2(Ψ(Br)) +
1

2

∫

Ψ(Br)

|DL|2

+Q

∫

Ψ(Br)

(〈D(η ◦ L) · ξ1, ξ1〉+ 〈D(η ◦ L) · ξ2, ξ2〉) .

By conformality the second summand in the last inequality equals 1
2

∫

Br
|DL|2. We inte-

grate by parts the third summand. Recall that η ◦ L = η ◦ N on Ψ(∂Br) = ∂(Ψ(Br)):
since η ◦N is orthogonal to ξi the boundary term vanishes. Moreover, since the origin is
a singularity, we must in fact integrate by parts in Br \Bε and then let ε → 0. A specific
choice of ξi is ξi = λ−1/2DΨ · ei, where e1, e2 is the parallel frame on BQ naturally induced
by the standard flat coordinates. It then turns out that

|Dξ1ξ1 +Dξ2ξ2|(Ψ(z, w)) ≤ Cm
1/2
0 |z|γ0−1 .

In particular |Dξ1ξ1 +Dξ2ξ2| is integrable on Br and we can therefore conclude

M(TG)−QH2(Ψ(Br)) ≤
1

2

∫

Ψ(Br)

|DL|2 +Q

∫

Ψ(Br)

〈η ◦ L,Dξ1ξ1 +Dξ2ξ2〉

≤1

2

∫

Br

|DL|2 + CErr2(L , Br) . (3.13)

Combining (3.12) and (3.13) we conclude (3.5).

3.2. Proof of Proposition 3.2 case (b): T semicalibrated. We proceed as in the
previous step and define the current Z as in (3.6). If S is any current such that

∂S = T − Z = TF |Br
−TG = TF |Ψ(Br)

−TG ,

then the semicalibrated condition gives

M(T ) ≤ M(Z) + S(dω) ,

where ω is the calibrating form. In particular, in order to conclude the proof it suffices to
find an S such that

|S(dω)| ≤ C Err1(N , Br) + C Err2(L , Br) +
C

r

∫

Br

|L|2 : (3.14)

combining the latter inequality with the estimates of the previous subsection we reach the
desired inequality.
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We first define Hi : [0, 1]×Ψ(Br) → AQ(R
2+n) for i = 1, 2 by

[0, 1]×Ψ(Br) ∋ (t, p) 7→ H1(t, p) :=

Q
∑

i=1

Jp+ tNi(p)K ∈ AQ(R
2+n)

[0, 1]×Ψ(Br) ∋ (t, p) 7→ H2(t, p) :=

Q
∑

i=1

Jp+ (1− t)Li(p)K ∈ AQ(R
2+n) .

We choose S := S1 +S2, where Si := THi
for i = 1, 2. Thanks to the homotopy formula in

[5], we get

∂S1 = TF |Ψ(Br)
−Q JMK −TH1|[0,1]×Ψ(∂Br)

,

∂S2 = Q JMK −TG|Ψ(Br)
+TH2|[0,1]×Ψ(∂Br)

.

On the other hand since N = L on Ψ(∂Br), we conclude ∂S = ∂(S1 + S2) = T − Z.
We next estimate |S1(dω)| and |S2(dω)|. Since the estimates are analogous, we give the

details only for the first. We start from the formula

S1(dω) =

∫

Ψ(Br)

∫ 1

0

Q
∑

i=1

〈
~ζi(t, p), dω((H1)i(t, p))

〉
dH2(p) dt,

with

~ζi(t, p) =
(
ξ1 + t∇ξ1Ni(p)

)
∧
(
ξ2 + t∇ξ2Ni(p)

)
∧Ni(p)

=: ξ1 ∧ ξ2 ∧Ni(p) + ~Ei(t, p) ,

and

| ~Ei(t, p)| ≤ C (|DN |(p) + |DN |2(p)) |N |(p). (3.15)

Next we note that

dω((H1)i(t, p)) = dω(p) + I(t, p), (3.16)

where I(t, p) can be estimated by

|I(t, p)| = |dω((H1)i(t, p))− dω(p)| ≤ C ‖D2ω‖L∞ |N |(p). (3.17)

Therefore, we have

∣
∣
∣

Q
∑

i=1

〈
~ζi(t, p), dω((H1)i(t, p))

〉
∣
∣
∣ ≤

Q
∑

i=1

〈ξ1 ∧ ξ2 ∧Ni(p), dω(p)〉+ ‖dω‖L∞

Q
∑

i=1

| ~Ei(t, p)|

+ C

Q∑

i=1

(

(|Ni|+ | ~Ei|) |I|
)

(t, p)

≤ Cm
1/2
0 |η ◦N |+ C|N |2(p) + C|DN |(p) |N |(p) + Cr|DN |2(p) ,
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where we have only used the bound |N |(p) ≤ Cr on Ψ(Br). Arguing similarly for S2

(observe that we have the bound |L|(p) ≤ Cr) and estimating |N ||DN | + |L||DL| ≤
r−1(|N |2 + |L|2) + Cr(|DN |2 + |DL|2), we achieve

|S1(dω)|+ |S2(dω)| ≤ Cm
1/2
0

∫

Ψ(Br)

(
|η ◦N |+ |η ◦ L|

)
+ C r−1

∫

Ψ(Br)

(
|N |2 + |L|2

)

+ Cr

∫

Ψ(Br)

(
|DN |2 + |DL|2

)
,

and we conclude as above by a change of variable and Theorem 2.6.

3.3. Proof of Proposition 3.2 in case (c): T is the cross-section of a three di-
mensional area minimizing cone. Recall that in this case spt(T ) ⊂ ∂BR(p0), where

p0 = (0, . . . , 0, R) = Ren+2 and R−1 ≤ m
1/2
0 . For the computations of this subsection it is

indeed convenient to change coordinates so that p0 is in fact the origin, whereas Ψ(0, 0)
is the point (0, . . . , 0,−R). In these new coordinates we then have M, spt(T ), Im(F ) ⊂
∂BR(0). These coordinates will however be used only in here, whereas in the next sections
we will return to the usual ones.

We introduce the following notation: C(r) is the cone over Ψ(Br) with vertex 0, i.e.

C(r) :=
{
ρp ∈ R

n+2 : ρ ∈ [0, 1], p ∈ Ψ(Br)
}
,

with the orientation compatible with that of 0×× JMK. We extend F to F̃ : C(r) →
AQ(R

n+2) by setting F̃ (ρp) := ρF (p) for every p ∈ Ψ(Br).
In order to estimate the Dirichlet energy of N in terms of that of L, we construct a

suitable function K : C(r) → AQ(R
n+2) (depending on L and N) such that K|∂C(r) =

F̃ |∂C(r): we can then test the minimizing property of 0×× T comparing its mass with that
of the current

Z := 0×× T −TF̃ +TK = 0×× (T −TF |Ψ(Br)
) +TK

which is easily recognized to satisfy ∂Z = ∂(0×× T ). In particular, using the minimality of
0×× T , we conclude

R−1M(0××TF |Ψ(Br)
) ≤ R−1M(TK) + CErr1(N , Br) . (3.18)

We consider the space of parameters [0, 1] × Br and recall that the points in BQ are
identified by two complex coordinates (z, w) ∈ C× C. For the definition of K we need to
introduce the following sets

A1 :=

{

(ρ, z, w) ∈ [0, 1]× Br : 1− r ≤ ρ ≤ 1, |z| ≤ ρ+ 2 r − 1

2

}

, (3.19)

A2 :=

{

(ρ, z, w) ∈ [0, 1]× Br : 1− 2 r ≤ ρ ≤ 1− r, |z| ≤ 1− ρ

2

}

, (3.20)

B :=[1− 2 r, 1]× Br \
(
A1 ∪A2

)
, (3.21)
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We then define the function H : [0, 1]×Br → AQ(R
n+2) given by

H (ρ, z, w) :=







ρL(z, w) if ρ ≤ 1− 2 r,

ρ l1(ρ)N
(

2 r z
ρ+2r−1

, (2 r)1/Q

(ρ+2 r−1)1/Q
w
)

if (ρ, z, w) ∈ A1,

−ρ l1(ρ)L
(

2 r z
1−ρ

, (2 r)1/Q

(1−ρ)1/Q
w
)

if (ρ, z, w) ∈ A2,

ρ l2(|z|)N
(

r z
|z| ,

r1/Q

|z|1/Qw
)

if (ρ, z, w) ∈ B,

(3.22)

where l1, l2 : R → R are the affine functions

l1(t) :=
t+ r − 1

r
and l2(t) :=

2 t− r

r
. (3.23)

The following are simple properties of H which can be easily verified:

(1) H (1, z, w) = N (z, w) for every (z, w) ∈ Br, as (1, z, w) ∈ A1 and l1(1) = 1;
(2) H (ρ, z, w) = ρN (z, w) for every ρ ∈ [0, 1] and for every z with |z| = r, as L|∂Br =

N |∂Br and l2(r) = 1;
(3) H is well-defined and continuous, as H ≡ 0 in A1 ∩ A2 from l1(1− r) = 0,

H (ρ, z, w) = ρ ρ+r−1
r

N
(

r z
|z| ,

r1/Q

|z|1/Q z
)

in A1 ∩ ∂B,

and

H (ρ, z, w) = ρ ρ+r−1
r

N
(

r z
|z| ,

r1/Q

|z|1/Qw
)

in A2 ∩ ∂B.

The competitor map K : C(r) → AQ(R
n+2) is now given by

K(ρ p) :=

Q
∑

i=1

Jρ p+Hi(ρ p)K with H(ρ p) := H (ρ,Ψ−1(p)).

Note that by (1) and (2) above it follows that K|∂C(r) = F̃ |∂C(r).
We start now estimating the masses of the various currents introduced above. Since

spt(TF ) ⊂ ∂BR(0), it follows that M(0××TF ) = RM(TF )/3 and, by the expansion of the
mass of TF , we have that

M(TF |Ψ(Br)
) ≥ QH2(Ψ(Br)) +

1

2

∫

Br

|DN |2 − CErr1(N , Br) . (3.24)

Combining the latter estimate with (3.18) we conclude
∫

Br

|DN |2 ≤ 6R−1M(TK)− 2QH2(Ψ(Br)) + C Err1(N , Br) . (3.25)

For what concerns the mass of TK , recalling that p + spt(L(p)) ∈ ∂BR(0) for every
p ∈ Ψ(Br), we deduce that

M(TK BR(1−2r)) = M(0××TG BR(1−2r)) = R
(1− 2r)3M(TG)

3
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and

M(TG) ≤ QH2(Ψ(Br)) +
1

2

∫

Br

|DL|2 + Err2(L , Br) .

In particular we conclude

6R−1M(TK BR(1−2r)) ≤ 2Q(1− 2r)3H2(Ψ(Br)) +

∫

Br

|DL|2 + Err2(L , Br) . (3.26)

Next we pass to estimating M(TK BR \BR(1−2r)). In order to carry on our estimates we
use the area formula for multifunctions, cf. [5]. In particular we fix an orthonormal frame
ξ1, ξ2 for M as in the proof of case (a) and we let ξ3 = R−1∂t be normal to them in TC(r),
i.e. pointing in the radial direction of the cone. We then have

M(TK (BR \BR(1−2r)) =

∫

C(r)

∑

i

|(ξ1 +DHi · ξ1) ∧ (ξ2 +DHi · ξ2) ∧ (ξ3 +DHi · ξ3)|
︸ ︷︷ ︸

(A)

.

Using the Taylor expansion for (A), cf. [5], we can bound

R−1M(TK (BR \BR(1−2r))) ≤ QR−1 H3
(
C(r) ∩B1 \B1−2r

)

+QR−1

∫ 1

1−2r

∫

Ψ(Br)

d

dt
[(η ◦H)(tp)]t2dt

+QR−1

∫ 1

1−2r

∫

Ψ(Br)

2∑

i=1

〈∇ξi(η ◦H), ξi〉 t2dt+ CR−1

∫ 1

1−2r

∫

Ψ(Br)

|DH|2 t2dt .

(3.27)

The linear terms can be integrated by parts: since ∇p(η ◦H)(tp) = d
dt
(η ◦H)(tp), we have

∫ 1

1−2r

∫

Ψ(Br)

d

dt
[(η ◦H)(tp)]t2dt =

∫

Ψ(Br)

〈
(η ◦H)(p)− (1− 2r)2(η ◦H)

(
(1− 2r)p

)
, p
〉

− 2

∫ 1

1−2r

∫

Ψ(Br)

〈(η ◦H)(tp), p〉 tdt (3.28)

∫ 1

1−2r

∫

Ψ(Br)

2∑

i=1

〈∇ξi(η ◦H), ξi〉 t2dt = −
∫ 1

1−2r

∫

Ψ(Br)

〈(η ◦H), HM〉 t2dt. (3.29)

Therefore, by a simple change of coordinates we can estimate

R−1M(TK (BR \BR(1−r))) ≤
Q
(
1− (1− 2r)3

)

3
H2
(
Ψ(Br)

)
(3.30)

+ Cm
1/2
0

∫

Br

(
|η ◦ N |+ |η ◦ L|

)
+ Cm

1/2
0

∫ 1

1−2r

∫

Br

|DH |2(t, z, w) dz dt (3.31)

+ Cm
1/2
0

∫ 1

1−2r

∫

Br

|z|γ0−1|η ◦ H |(t, z, w)dz dt . (3.32)
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In order to bound the various integrands of (3.30), we start with the following general
remark. Assume that χ : [1− 2r, 1]× Br → [0,+∞) has the structure

χ(ρ, x, y) =







χ1

(
2 r z

ρ+2r−1
, (2 r)1/Q

(ρ+2 r−1)1/Q
w
)

if (ρ, z, w) ∈ A1,

χ2

(
2 r z
1−ρ

, (2 r)1/Q

(1−ρ)1/Q
w
)

if (ρ, z, w) ∈ A2,

χ3

(
r z
|z| ,

r1/Q

|z|1/Qw
)

if (ρ, z, w) ∈ B,

(3.33)

for some χ1, χ2, χ3 : Br → [0,+∞). Then one can compute the integral of χ in the following
way:
∫ 1

1−2r

∫

Br

χ(t, z, w) dz dt =

∫

A1

χ(t, z, w) dz dt+

∫

A2

χ(t, z, w) dz dt+

∫

B

χ(t, z, w) dz dt,

and one can easily compute that
∫

A1

χ(t, z, w) dz dt =

∫ 1

1−r

∫

B t+2r−1
2

χ1(t, z, w) dz dt

=

∫ 1

1−r

∫

B t+2r−1
2

χ1

(
2 r z

t + 2r − 1
,

(2 r)1/Q

(t+ 2 r − 1)1/Q
w

)

dz dt

=

∫ 1

1−r

(
t+ 2r − 1

2r

)2 ∫

Br

χ1(z, w)dz dt ≤ r

∫

Br

χ1(z, w)dz dt . (3.34)

Similarly
∫

A2

χ(t, z, w)dz dt ≤ r

∫

Br

χ2(z, w) dt, (3.35)

and
∫

B

χ(t, z, w)dz dt =

∫ 1

1−r

dt

∫ r

t+2r−1
2

s

r
ds

∫

∂Br

χ3(z, w) dz

+

∫ 1−r

1−2r

∫

1−t
2

r
s

r
ds

∫

∂Br

χ3(z, w) dz ≤ r2
∫

∂Br

χ3(z, w) dz . (3.36)

By direct computations one verifies that the integrands in (3.30) are all bounded from
above by functions χ with the structure (3.33): in particular,

(i) |z|γ0−1|η ◦ H |(t, z, w) ≤ χ(t, z, w) if we choose

χ1(z, w) = χ3(z, w) = |z|γ0−1|η ◦ N |(z, w) and χ2(z, w) = |z|γ0−1|η ◦ L|(x, y);
(ii) |DH |2(t, z, w) ≤ χ(t, z, w) if we choose

χ1(z, w) = χ3(z, w) =
C

r2
|N |2(z, w) + C |DN |2(z, w)

χ2(z, w) =
C

r2
|L|2(z, w) + C |DL|2(z, w).
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for some dimensional constant C > 0.

It then turns out from (3.34), (3.35), (3.36) and (i), (ii), (iii) that

6R−1M(TK (BR \BR(1−r))) ≤ Q
(
1− (1− 2r)3

)
H2
(
Ψ(Br)

)

+ C Err1(N , Br) + C Err2(L , Br) . (3.37)

Summing (3.37) and (3.26) we conclude

6R−1M(TK) ≤ 2QH2(Ψ(Br)) +

∫

Br

|DL|2 + C Err1(N , Br) + C Err2(L , Br) .

Combining the latter estimate with (3.25) we conclude the proof.

4. Harmonic competitor

The most natural choice for the competitor L is a suitable “harmonic” extension of the
boundary value N |∂Br . Following the ideas of [3] we estimate carefully the energy of such
competitor. To this purpose it is useful to introduce “polar” coordinates with center 0 in B

and split accordingly the Dirichlet integrand in radial and angular parts. More precisely,
consider (z0, w0) = ((ξ0, ζ0), w0) ∈ ∂Br and take, locally, the standard flat coordinates
z = (x1, x2) of Definition 1.3. We then denote by ν the exterior unit vector normal to ∂Br

at (z0, w0) and by τ the corresponding tangent unit vector obtained by rotating ν of an
angle π/2 in the counterclockwise direction, namely

ν := |z0|−1

(

ξ0
∂

∂x1
+ ζ0

∂

∂x2

)

and τ := |z0|−1

(

−ζ0
∂

∂x1
+ ξ0

∂

∂x2

)

.

The directional derivatives of any (multi)function f on B gives then two (multi)functions

Dνf =
∑

i

JDfi · νK and Dτf =
∑

i

JDfi · τK .

The Dirichlet integrand |Df |2 enjoys then the splitting

|Df |2 = |Dνf |2 + |Dτf |2 .
For the rigorous justification of these identities see [4].

Proposition 4.1. There are constants C > 0, σ > 0 such that, for every r ∈ (0, 1) there
exists a competitor L : Br → AQ(R

2+n) for N with the following additional properties:

(i) Lip(L) ≤ C−1
3.2 , ‖L‖0 ≤ Cr.

(ii) The following estimates hold:
∫

Br

|DL̄|2 ≤ C r

∫

∂Br

|DN̄ |2 ≤ CrD′(r) , (4.1)

∫

Br

|z|γ0−1|η ◦ L| ≤ C rγ0
∫

∂Br

|η ◦ N |+ CH(r) . (4.2)
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(iii) For every a > 0 there exists b0 > 0 such that, for all b ∈ (0, b0), the following
estimate holds:

(2 a+ b)

∫

Br

|DL̄|2 ≤ r

∫

∂Br

|DτN |2 + a (a+ b)

r

∫

∂Br

|N |2 + Cr1+σD′(r) . (4.3)

Using this competitor in Proposition 3.2, we then infer the following corollary.

Corollary 4.2. For every r ∈ (0, 1) the following inequality holds

D(r) ≤ C rD′(r) + CH(r) + C F(r) + Cm
1/2
0 rγ0

∫

∂Br

|η ◦ N | . (4.4)

For every a > 0 there exists b0 > 0 such that, for all b ∈ (0, b0) and all r ∈]0, 1[

D(r) ≤ (1 + Cr)

[
r

(2 a+ b)

∫

∂Br

|DτN |2 + a (a+ b)

r (2 a+ b)
H(r)

]

+ C EQM(r) + Cr1+σD′(r) ,

(4.5)

with

EQM(r) ≤ Λ(r)η0D(r) + F(r) +H(r) +m
1/2
0 rγ0

∫

∂Br

|η ◦ N | .

Proof of Corollary 4.2. Recalling that H(r) ≤ Cr‖N ‖2∂Br
≤ Cr3+γ0 we easily infer that

Λ(r) ≤ Cr2 and thus the inequalities follow readily from Proposition 3.2 and Proposition
4.1. �

4.1. Proof of Proposition 4.1: Step 1. First of all we observe that it suffices to exhibit
L̄, as L can be recovered from it via the formula (3.1). Moreover, it suffices to show the
estimates with N̄ in place of N in the right hand side, because we obviously have |N̄ | ≤ |N |
and |DN̄ | ≤ |DN |. Next we wish to relate η ◦ L and η ◦ L̄ for two maps satisfying the
relation (3.1). Note that by a simple Taylor expansion we have

|η ◦ L| ≤ C|η ◦ L̄|+ CG(L̄ ,η ◦ L̄)2 ,

where the constant C depends on the C2 norm of Ψ0. In particular we record the following
conclusion:

∫

Br

|z|γ0−1|η ◦ L| ≤ C

∫

Br

|z|γ0−1|η ◦ L̄|+ C

∫

Br

|z|γ0−1|L̄|2 . (4.6)

In this step we exhibit an “harmonic”1 competitor H which satisfies all the requirements
of the proposition except for the Lipschitz estimate. In fact we will show that there is a

1We remark that the competitor used here does not coincide, in general, with the Dirichlet minimizer
with boundary value N̄ |∂Br

.
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W 1,2 map H : Br → AQ(R
2+n̄) such that

H |∂Br = N̄ |∂Br and ‖H ‖L∞(Br) ≤ Q‖N̄ ‖L∞(∂Br) (4.7)
∫

Br

|DH |2 ≤ Cr

∫

∂Br

|DN̄ |2 (4.8)

∫

Br

|z|γ0−1|η ◦ H | ≤ Crγ0
∫

∂Br

|η ◦ N̄ | (4.9)

∫

Br

|z|γ0−1|H |2 ≤ Crγ0
∫

∂Br

|N̄ |2 (4.10)

(2 a+ b)

∫

Br

|DH̄ |2 ≤ r

∫

∂Br

|Dτ N̄ |2 + a (a+ b)

r

∫

∂Br

|N̄ |2 . (4.11)

In these estimates we do not use any of the particular properties of N̄ and indeed for any
Lipschitz multivalued map N̄ : Br → AQ(R

2+n̄) there is such an “harmonic” competitor.
Therefore, given the scaling invariance of the estimates, we will assume without loss of
generality that r = 1.

Let Dr := {|z| < r} denote the disk of radius r in R
2, which we identify with the complex

plane. We start by defining the “winding map” W : D̄1 → B given (in complex notation)
by

W(z) := (zQ̄, z) .

We then consider the multivalued map U := N̄ ◦W. Let θ 7→ u(θ) be its trace on ∂D1(0),
which we parametrize with the angle θ ∈ [0, 2π]. According to [4, Proposition 1.5] we can

decompose u in a superposition of simple functions u(θ) =
∑J

j=1 uj(θ) such that, for every
j = 1, . . . , J ,

uj(θ) =

Qj∑

i=1

s
γj

(
θ + 2πi

Qj

){
,

where the γj : [0, 2π] → R
2+n̄ are periodic Lipschitz functions. Next consider the Fourier’s

expansion of each γj

γj(θ) =
aj,0
2

+

∞∑

l=1

(aj,l cos(lθ) + bj,l sin(lθ)) ,

and its harmonic extension, which in polar coordinates (ρ, θ) reads as

ζj(ρ, θ) :=
aj,0
2

+
∞∑

l=1

ρl
(
aj,l cos(lθ) + bj,l sin(lθ)

)
. (4.12)

We then can define the “harmonic” competitor for U, which is the Q-valued map

V (ρ, θ) :=
J∑

j=1

Qj∑

i=1

s
ζj

(

ρ
1/Qj ,

θ + 2πi

Qj

){
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and the “harmonic” competitor for N̄ , which is H = V ◦ W−1. Observe that the first
claim in (4.7) is obvious, whereas the second claim follows from the maximum principle
for classical harmonic functions.

Simple computations and the conformality ofW, see for instance [4, Proof of Proposition
5.2], yield

∫

B1

|DH |2 =
∫

D1

|DV |2 =π

J∑

j=1

∞∑

l=1

l
(
|aj,l|2 + |bj,l|2

)
, (4.13)

∫

∂B1

|DτH |2 = π

Q̄

J∑

j=1

∞∑

l=1

l2

Qj

(
|aj,l|2 + |bj,l|2

)
, (4.14)

∫

∂B1

|H |2 =πQ̄
J∑

j=1

Qj

( |aj,0|2
2

+
∞∑

l=1

(
|aj,l|2 + |bj,l|2

))

. (4.15)

Clearly, (4.8) follows from the first and second inequality, with the constant C = Q̄Q1 ≤
Q̄Q, assuming that Q1 = max{Q1, . . . , Qj}. (4.11) follows from the fact that, for any
chosen a > 0, if b0 is sufficiently small and 0 < b < b0, then

(2a+ b)ℓ ≤ ℓ2

Q̄Qj

+ Q̄Qjℓa(a + b) ∀ℓ ∈ N .

The latter claim is elementary and the reader can consult, for instance, Step 2 in the proof
of [4, Proposition 5.2].

Observe next that η ◦V is the classical harmonic extension of the single-valued function
η ◦ U|∂D1. We then have the classical estimates

‖η ◦ V ‖L∞(D
21/Q̄

) + ‖η ◦ V ‖L1(D1) ≤ C‖η ◦ U‖L1(∂D1) .

In particular we conclude easily

‖η ◦ H ‖L∞(B1/2) + ‖η ◦ H ‖L1(B1\B1/2) ≤ C

∫

∂B1

|η ◦ N̄ | ,

because the change of variables W−1 is smooth on B1 \ B1/2. The integrability of |z|γ0−1

on B1 gives then
∫

B1

|z|γ0−1|η ◦ H (z, w)| dz ≤C‖η ◦ H ‖L∞(B1/2) + C‖η ◦ H ‖L1(B1\B1/2) ,

which in turn completes the proof of (4.9).
A similar argument proves (4.10). Using the classical theory of single valued harmonic

functions we see indeed that ‖ζj‖L2(B1) + ‖ζj‖L∞(B1/2) ≤ C‖γj‖L2(∂B1) and thus, using the

fact that W is smooth on B1 \B1/2, we conclude that

‖H ‖2L∞(B1/2)
+ ‖H ‖2L2(B1\B1/2)

≤ C

∫

∂B1

|N̄ |2 .

From this we easily conclude (4.10).
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4.2. Proof of Proposition 4.1: Step 2. We keep the notation of the previous paragraphs
and assume that N̄ is defined in B1, after scaling. The specific scaling that we are using
is the one which preserves the Lipschitz constant and is given by

N̄ (z, w) 7→ r−1N̄
(
rz, r

1/Q̄w
)

and by abuse of notation we keep the symbols N̄ , L̄, etc. for all the rescaled maps.

Under this scaling we then have the estimates ‖N̄ ‖L∞ ≤ Cm
1/4
0 rγ0/2 and Lip(N̄ ) ≤

Λ(r)η0 and we want to show that we can modify H to a competitor L̄ with Lip(L̄) ≤ C−1
3.2 ,

satisfying

L̄|∂B1 = N̄ |∂B1 and ‖L̄‖L∞(B1) ≤ C‖N̄ ‖L∞(∂B1) (4.16)
∫

B1

|DL̄|2 ≤ C(1 + rσ)

∫

B1

|DH |2 + CΛ(r)σ
∫

∂B1

|DN̄ |2 (4.17)

∫

Br

|z|γ0−1|L̄|2 ≤ C

∫

∂B1

|N̄ |2 (4.18)

∫

B1

|z|γ0−1|η ◦ L̄| ≤ C

∫

∂B1

|η ◦ N̄ | . (4.19)

Observe that the harmonic functions ζj defined in (4.12) are Lipschitz in every ball D1−t

for 0 < t < 1 with an estimate of the form

‖Dζj‖L∞(D1−t) ≤
C

t
Lip(γj) ≤

C

t
Lip(N̄ ) ≤ CΛ(r)η0

t
. (4.20)

They are not Lipschitz up to the boundary ∂D1 because the Dirichlet to Neumann map
γj → ∂ζj

ρ
(1, ·) does not map L∞ into L∞. However we have the estimate

‖Dζj‖Lp(D1) ≤ Cp‖γj‖W 1,p(∂D1) ≤ CpΛ(r)η0

for every p < ∞. In particular, we can bound

‖ζj(1− t, ·)− γj‖W 1,1(∂D1) ≤ C2t
1/2Λ(r)η0 ,

which in turn implies

max |ζj(1− t, θ)− γj(θ)| ≤ C2t
1/2Λ(r)η0 . (4.21)

Choose t := Λ(r)η0/2 and define a new map ξj as

ξj(ρ, θ) :=







ζj(ρ, θ) for ρ ≤ 1− t

1−ρ
t
ζj(1− t, θ) + ρ−(1−t)

t
γj(θ) for 1− t ≤ ρ ≤ 1.

Now, (4.20) and (4.21) imply that ‖Dζj‖ ≤ CΛ(r)η0/2. Moreover we obviously have
∫

D1

|Dξj|2 ≤
∫

D1

|Dζj|2 + CΛ(r)η0
(∫

∂D1−t

|Dζj|2 +
∫

∂D1

|Dγj|2
)

≤
∫

D1

|Dζj|2 + CrΛ(r)η0
∫

∂B1

|Dγj|2 . (4.22)
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We can now define two “intermediate” maps

V 0(ρ, θ) :=

J∑

j=1

Qj∑

i=1

s
ξj

(

ρ
1/Qj ,

θ + 2πi

Qj

){

and L0 := V 0 ◦ W−1. It is then immediate to see that L0 enjoys the bound Lip(L0) ≤
CΛ(r)η0/2 on the domain B1 \B1/4 and that all the estimates (4.16), (4.17) and (4.19). On
the other hand the differential DL0 is singular in the origin and in fact it is rather easy to
see that we have the bound

|DL0(z, w)|2 ≤ C|z|2−2/(QQ̄)

∫

B1

|DL0|2 . (4.23)

In order to produce L̄ we need to smooth the singularity of L0 at the origin. There are
several ways to do this and we present here one possibility. First of all we fix 2 < p <
2QQ̄/(2QQ̄− 2) and observe that (4.23) yields the estimate

∫

B3/4

|DL0(z, w)|p ≤ C
(∫

B1

|DL0|2
)p/2

. (4.24)

Next we define

M |DL0(z, w)| := sup
ρ<1/4

1

ρ2

∫

Bρ(z,w)

|DL0(z, w)|

and let

A := {(z, w) : M |DL0(z, w)| ≥ c0}
where c0 is a constant to be chosen later. Observe that, given the Lipschitz bound for L0

outside the origin, for r sufficiently small the set A is contained in B1/2. Arguing as in the
proof of [4, Proposition 4.4] we have the Lipschitz estimate Lip(L0) ≤ Cc0 on B1\A, where
C is a dimensional constant. We can then use the Lipschitz extension of [4, Theorem 1.7]
to extend L0 to L̄ on A so that Lip(L) ≤ Cc0. Choosing c0 accordingly we achieve the
desired Lipschitz bound on B1. As for (4.16) and (4.18) observe that the extension satisfies

‖L̄‖2L∞(B1/2)
≤ C‖H ‖2L∞(B3/4)

and coincides with L0 on B1 \ B1/2. As for (4.19), it would suffice to show that |η ◦ L̄| ≤
C|η ◦ N̄ |. This can be easily achieved in the following way: we make a Lipschitz extension
of L0, subtract from each sheet the average and then sum back to each sheet a Lipschitz
extension of η ◦ L0.

As for (4.17) we compute
∫

|DL̄|2 ≤
∫

|DL0|2 + Cc20|A| ≤
∫

|DL0|2 + Cc2−p
0

∫

B3/4

|DL0|p

≤
∫

|DL0|2
(

1 + Cc2−p
0

(∫

|DL0|2
)p/2−1)

. (4.25)
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Observe that p/2− 1 > 0 and that by (4.22) and (4.8)
∫

|DL0|2 ≤
∫

|DH |2 + CΛ(r)
σ/2

∫

∂B1

|DN̄ |2 ≤ C

∫

∂B1

|DN̄ |2 ≤ Crσ .

so that
∫

B1

|DL̄|2 ≤ (1 + C rσ)

∫

B1

|DH |2 + Crσ
∫

∂B1

|DN̄ |2
(4.8)

≤
∫

B1

|DH |2 + Crσ
∫

∂B1

|DN̄ |2 .

5. Outer variations and the poincaré inequality

In this section we begin to exploit the first variations of the area functional on T in
conjunction with the estimates of the previous section. The main conclusion will be the
following Poincaré inequality:

Theorem 5.1 (Poincaré inequality). There exists a constant C5.1 > 0 such that if r is
sufficiently small, then

H(r) ≤ C5.1 rD(r) . (5.1)

We record however the two main tools used to prove Theorem 5.1, since they will be
useful in the future. The first one is an elementary computation. In order to state it we
introduce the quantity

E(r) :=

∫

∂Br

Q
∑

j=1

〈N j, DνN j〉 . (5.2)

Lemma 5.2. H is a Lipschitz function and the following identity holds for a.e. r ∈ (0, 1)

H′(r) =
H(r)

r
+ 2E(r) . (5.3)

The second identity is a consequence of the first variations of T under specific vector
fields, which we call “outer variations”: such variations “stretch” the normal bundle of M
suitably and they are defined using the map N . In the case of semicalibrated currents it
is convenient to modify the Dirichlet energy suitably to gain a new quantity which enjoys
better estimates. Thus, from now on Ω will denote D in the cases (a) and (c) of Definition
0.1, whereas in the case (b) it will be given by

Ω(r) :=D(r) + L(r)

:=D(r) +

∫

Ψ(Br)

Q
∑

i=1

〈ξ1(p) ∧Dξ2Ni(p) ∧Ni(p) +Dξ1Ni(p) ∧ ξ2(p) ∧Ni(p), dω(p)〉 dp .

Proposition 5.3 (Outer variations). There exist constants C5.3 > 0 and κ > 0 such that,
if r > 0 is small enough, then the inequality

|Ω(r)−E(r)| ≤ C5.3 EOV (r) (5.4)
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holds with

EOV (r) = Λ(r)κ
(

D(r) +
H(r)

r
+ rD′(r)

)

+ F(r) + r1+γ0
d

dr
‖T −TF‖(p−1(Ψ(Br))) .

(5.5)

Moreover

|L(r)| ≤Cm
1/2
0 r2−γ0D(r) + Cm

1/2
0 F(r). (5.6)

5.1. Proof of Lemma 5.2. The Lipschitz regularity of H follows from the Lipschitz
regularity of N . Consider next the map ir : B → B given by ir(z, w) =

(
rz, r1/Q̄w

)
. By a

simple change of variables we compute

H(r) =

∫

∂B1

|N |2(ir(z′, w′)) r .

The formula (5.3) is then an elementary computation using the chain rule for multifunc-
tions, cf. [4].

5.2. Proof of Proposition 5.3. The inequality (5.6) is a simple consequence of

|L(r)| ≤ Cm
1/2
0

∫

Br

|DN ||N | ≤ Cm
1/2
0

∫

Br

|z|2−γ0 |DN |2 + Cm
1/2
0

∫

Br

|z|γ0−2|N |2 .

In order to show (5.4) we fix a test function φ ∈ C∞
c (R), nonnegative, symmetric, with

support in ]− 1, 1[ and monotone decreasing on [0, 1]. We then follow [8, Section 3.3] and,
having fixed r, we define the vector field Xo on Vu,a via

Xo(p) := ϕ(p(p))(p− p(p)) where ϕ(Ψ(z, w)) = φ
(

|z|
r

)

.

For r small enough, by (2.13) we can argue as in [8, Section 3.3] and deduce via the change
of coordinates given by Ψ, that

δTF (X) =

∫

B

φ
( |z|

r

)
|DN |2 + r−1

∫

B
φ′( |z|

r

) ∑Q
j=1〈N j , DνN j〉+

∑3
i=1 Err

o
i , (5.7)

with

Erro1 =
∣
∣
∣

∫

M
ϕ 〈HM,η ◦N〉

∣
∣
∣ ≤ Cm

1/2
0

∫

Br

|z|γ0−1 |η ◦ N |
(2.14)

≤ CΛη0(r)D(r) + C F(r) ,

(5.8)

Erro2 ≤ C

∫

M
|ϕ| |AM|2 |N |2 ≤ C F(r) , (5.9)
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Erro3 ≤C

∫

M

(

|ϕ|
(
|DN |2 |N | |AM|+ |DN |4

)
+ |Dϕ|

(
|DN |3 |N |+ |DN | |N |2 |AM|

))

≤C

∫

Br

[( |N |2
|z|2−2 γ0

+ |DN |4
)

− r−1φ′( |z|
r
) r1+γ0 |DN |3 − r−1φ′( |z|

r
) |DN | |N |2

|z|1−γ0

]

(2.13)&(2.12)

≤ C Λη0(r)D(r) + CF(r)− CΛ(r)η0
∫

Br

r−1φ′( |z|
r
) |N |2
|z|1−γ0

− C r1+γ0 Λη0

∫

Br

r−1φ′( |z|
r
) |DN |2 . (5.10)

(We recall that φ′ ≤ 0 on [0, 1])).

We next drop the superscript from Xo and we distinguish two situations:

• In the cases (a) and (c) of Definition 0.1, we denote by X⊥ and XT the projections
of X on the normal and the tangential bundle of Σ, respectively. Then δT (XT ) = 0
and therefore

|δTF (X)| ≤ |δTF (X)− δT (X)|
︸ ︷︷ ︸

Erro4

+ |δT (X⊥)|
︸ ︷︷ ︸

Erro5

;

• In case (b), since δT (X) = T (dw X), we estimate
∣
∣δTF (X)−TF (dω X)

∣
∣ ≤ |δTF (X)− δT (X)|+ |T (dω X)−TF (dω X)|

︸ ︷︷ ︸

Erro4

.

In both cases we have

Erro4 ≤Q

∫

spt(T )\Im(F )

|div~TX| d‖T‖+Q

∫

Im(F )\spt(T )

∣
∣div~TF

X
∣
∣ d‖TF‖

+Q‖dω‖∞
∫

|X|d‖T −TF‖ ,

where we use the convention that ω = 0 in the cases (a) and (c). We then can estimate

Erro4 ≤ C

∫

(ϕ′(p(p)) |p− p(p)|+ ϕ(p(p))) d‖T −TF‖
(2.12)&(2.15)

≤ CΛη0(r)D(r) + C F(r) + C r1+γ0

∫

|∇ϕ(p(p))| |p− p(p)| d‖T −TF‖
︸ ︷︷ ︸

S(ϕ)

.

(5.11)

In case (b) we have that

TF (dω X) =

∫

M
ϕ

Q∑

i=1

〈(ξ1 +Dξ1Ni) ∧ (ξ2 +Dξ2Ni · ξ2) ∧Ni , dω(p+Ni(p)) .
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Clearly

∣
∣
∣TF (dω X)−

∫

M
ϕ

Q∑

i=1

〈(ξ1 +Dξ1Ni) ∧ (ξ2 +Dξ2Ni · ξ2) ∧Ni , dω(p)〉
∣
∣
∣

≤ C‖dω‖1
∫

ϕ|N |2

and we can therefore conclude

∣
∣
∣TF (dω X)−

∫

M
ϕ

Q
∑

i=1

〈ξ1(p) ∧Dξ2Ni(p) ∧Ni(p) +Dξ1Ni(p) ∧ ξ2(p) ∧Ni(p), dω(p)〉
∣
∣
∣

≤C‖dω‖0
∫

ϕ|N ||DN |2 + C‖dω‖0
∫

ϕ|η ◦N | + C‖dω‖1
∫

ϕ|N |2 .

Letting φ converge to the characteristic function of the interval [−1, 1], we reach the conclu-
sion (5.4). The only term which needs some care is the term S(ϕ) in (5.11). Note that we
can approximate the characterstic function of [−1, 1] with an increasing sequence of func-
tions φj with the property that |φ′

j| ≤ Cj, 0 ≤ φj ≤ 1 and φj ≡ 1 on [−1 + 1/j, 1− 1/j].
Then we would have

lim sup
j

S(ϕj) ≤ C lim sup
j

j

r
‖T −TF‖(Ψ(Br \Br(1−1/j))) ≤ C

d

dr
‖T −TF‖(Ψ(Br)) ,

by the monotonicity of the function r 7→ ‖T −TF‖(Ψ(Br)).
In the cases (a) and (c) we follow the same argument, but we need to bound the additional

term Erro5. In order to deal with the latter term we argue as in [8, Section 4.1]. In particular
we bound

Erro5 ≤
∣
∣
∣
∣

∫

div~TX
⊥ d‖T‖

∣
∣
∣
∣

≤
∫

spt(T )\Im(F )

|div~TX| d‖T‖+
∫

Im(F )\spt(T )

∣
∣div~TF

X
∣
∣ d‖TF‖

︸ ︷︷ ︸

I1

+

∣
∣
∣
∣

∫

〈X⊥, h(~TF (p))〉 d‖TF‖
∣
∣
∣
∣

︸ ︷︷ ︸

I2

, (5.12)

where h(v1 ∧ v2) :=
∑2

i=1AΣ(vi, vi). Since the projection on the normal to Σ is a C2,ε0

map, X⊥ enjoys the same C1 bounds as X and I1 can be controlled as Erro4. The term I2
can be estimated using

|Xo⊥(p)| = ϕ |pTpΣ⊥(p− p(p))| ≤ Cc(Σ)ϕ |p− p(p)|2 ≤ Cm
1/2
0 ϕ |p− p(p)|2 ∀ p ∈ Σ.

In particular we achieve I2 ≤ CH(r), which concludes the proof.
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5.3. Proof of Theorem 5.1. In order to prove the theorem we start estimating the error
term F.

Lemma 5.4. There exist a constant C5.4 > 0 (depending on γ0) such that

F(r) ≤ C5.4 r
γ0−1H(r) + C5.4 r

γ0 D(r) ∀ r ∈ (0, 1). (5.13)

Proof. Using (5.3) and an integration by parts we infer that

γ0

∫ r

0

H(ρ)

ρ2−γ0
dρ =

H(ρ)

ρ1−γ0

∣
∣
∣

r

0
−
∫ r

0

d

dρ

(
H(ρ)

ρ

)

ργ0 dρ =
H(r)

r1−γ0
−
∫ r

0

2E(ρ)

ρ1−γ0
dρ. (5.14)

The Cauchy–Schwarz inequality yields then the following bound for every ε:

|E(r)| ≤ ε

r

∫

∂Br

|N |2 + r

4ε

∫

∂Br

|DN |2 = ε
H(r)

r
+

rD′(r)

4ε
. (5.15)

Therefore, by choosing ε = γ0/2, we deduce (5.13) from (5.14) and (5.15). �

Proof of Theorem 5.1. In view of Lemma 5.4, for r sufficiently small, the almost minimizing
condition (4.4) reads as

D(r) ≤ C rD′(r) + C
H(r)

r1−γ0
+ Cm

1/2
0 rγ0

∫

∂Br

|η ◦ N | .

Dividing by the radius and integrating we get

∫ r

0

D(s)

s
ds ≤ C

∫ r

0

(

D′(ρ) +
H(ρ)

ρ2−γ0
+ ργ0−1

∫

∂Bρ

|η ◦ N |
)

dρ

(5.13)

≤ CD(r) + C F(r) + Cm
1/2
0

∫

Br

|η ◦ N |
|z|1−γ0

(2.14)

≤ CD(r) + C (Λη0(r)D(r) + F(r)) ≤ CD(r) + C rγ0−1H(r) . (5.16)

Therefore, using Lemma 5.2 we deduce that

H(r)

r
=

∫ r

0

2E(ρ)

ρ
dt

(5.4)

≤ C

∫ r

0

D(ρ)

ρ
dρ

+ C

∫ r

0

(
H(ρ)

ρ2−2γ0
+ ργ0 D′(ρ) + ργ0

d

dρ
‖T −TF‖(p−1(Ψ(Bρ)))

)

dρ

(5.16)

≤ CD(r) + C
H(r)

r1−γ0
+ C rγ0D(r) + C F(r) + C rγ0‖T −TF‖(p−1(Ψ(Br)))

(2.15)&(5.13)

≤ CD(r) + C
H(r)

r1−γ0
.

For r sufficiently small this concludes the proof. �
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6. Inner variations and key estimates

Using the Poincaré inequality in Theorem 5.1, we can give very simple estimates of
the error terms in the “inner variations” of the current T . The latter corresponds to
deformations of T along appropriate vector fields which are tangent to M. In order to
state our main conclusion we need to introduce yet another quantity

G(r) :=

∫

∂Br

|DνN |2 . (6.1)

Proposition 6.1 (Inner Variations). There exist constants C6.1 > 0 and η > 0 such that,
if r > 0 is small enough, than the following holds

|D′(r)− 2G(r)| ≤ C EIV (r) , (6.2)

where

EIV (r) = r2η−1D(r) +D(r)η D′(r) +
m

1/2
0

r1−γ0

∫

∂Br

|η ◦ N (z, w)|

+
d

dr
‖T −TF‖(p−1(Ψ(Br))) . (6.3)

For further use we summarize in the next lemma a set of inequalities which will be used
in the next sections and which are direct consequences of all the conclusions derived so far

Lemma 6.2. There exist constant C6.2 > 0 and η > 0 such that for every r sufficiently
small the following holds:

F(r) + rF′(r) ≤C6.2 r
γ0D(r) (6.4)

|L(r)| ≤C6.2 rD(r) (6.5)

|L′(r)| ≤C6.2 (H(r)D′(r))
1/2

(6.6)

EOV ≤C6.2D
1+η(r) + C6.2F(r) + C6.2rD

η(r)D′(r) + C6.2 r EBP (r), (6.7)

EIV (r) ≤C6.2 r
2η−1D(r) + C6.2D(r)η D′(r) + C6.2 EBP (r), (6.8)

where

EBP (r) :=
m

1/2
0

r1−γ0

∫

∂Br

|η ◦ N |+ d

dr
‖T −TF‖(p−1(Ψ(Br)))

Moreover, for every a > 0 there exist constants b0(a), C(a) > 0 such that

D(r) ≤ rD′(r)

2(2 a+ b)
+

a(a + b)H(r)

r(2 a+ b)
+ C(a) r EIV (r) ∀ b < b0(a). (6.9)

An important corollary of the previous lemma is the following

Corollary 6.3. There exists a constant C6.3 > 0 such that, if η is the constant of Lemma

6.2, then for every 0 ≤ γ < η and r sufficiently small, the nonnegative functions EIV (r)
rγ D(r)
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EOV (r)
r1+γD(r)

are both integrable. Moreover, if we define the functions

ΣIV (r) :=

∫ r

0

EIV (s)
sγ D(s)

ds , (6.10)

ΣOV (r) :=

∫ r

0

EOV (s)

sγ D(s)
ds , (6.11)

Σ(r) :=ΣIV (r) +ΣOV (r) , (6.12)

then

Σ(r) ≤ C6.3 r
η−γ . (6.13)

6.1. Proof of Proposition 6.1. We evaluate the first variation of T along a suitably
defined vector field X . To this aim we fix a function φ ∈ C∞

c (] − 1, 1[), symmetric,
nonnegative and identically one on ]−1+1/j, 1−1/j[ and with the property that |φ′| ≤ Cj.
Then we introduce the vector field Y : M → Rn+2 defined, for every (z, w) ∈ B \ {0}, by

Y (Ψ(z, w)) := |z|
r
φ( |z|

r
)DνΨ(z, w) ∈ TΨ(z,w)M ,

and extended to be 0 at the origin.
Next we define the vector field Xi : Va,u → Rn+2 by Xi(p) := Y (p(p)). Note that Xi

is the infinitesimal generator of a one parameter family of diffeomorphisms Φε defined
as Φε(p) := Γε(p(p)) + p − p(p), where Γε is the one-parameter family of biLipschitz
homeomorphisms of M generated by Y . In fact, since Γε fixes the origin, we can consider
it as a C2,γ0 map of M\ {0} onto itself. Note moreover that Xi is Lipschitz on the entire
B.

Observe that, by Lemma 5.4 and the Poincaré inequality, F(r) ≤ C rγ0 D(r), so that
Λ(r) ≤ CD(r). Moreover,

|DMY |(Ψ(z, w)) + |divM Y |(Ψ(z, w)) ≤ −Cr−2|z| φ′( |z|
r
) + Cr−1 φ( |z|

r
) , (6.14)

where we recall that φ′ ≤ 0 on [0, 1].
If r is small enough, by (2.13) we can argue as in [8, Section 3.3] and deduce that

1

2

∣
∣
∣
∣
∣

∫

M

(

|DN |2 divMY − 2

Q
∑

i=1

〈DNi : (DNi ·DMY )〉
)∣
∣
∣
∣
∣
≤

5∑

k=1

Errik ,

where the error terms can be bounded in the following manner.
First of all,

Erri1 = Q

∣
∣
∣
∣

∫

M

(
〈HM,η ◦N〉 divMY + 〈DYHM,η ◦N〉

)
∣
∣
∣
∣

≤ Cr−1
m

1/2
0

∫

B

(

φ
( |z|

r

)
|z|γ0−1 |η ◦ N (z, w)| − φ′( |z|

r

)
|z|γ0−1 |η ◦ N (z, w)|

)

(2.14)

≤ Cr−1D1+η(r)− Cm
1/2
0 rγ0−1

∫

Br

r−1φ′( |z|
r

)
|η ◦ N (z, w)| ,
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where in the first inequality we used (6.14) and the fact that

〈DYHM,η ◦N〉 ≤ |Y | |DHM| |η ◦N | ≤ C |z|
r
φ( |z|

r
) |z|γ0−2 |η ◦ N | .

As for Erri2 and Err3i we have

Erri2 = C

∫

M
|AM|2

(
|DY | |N |2 + |Y | |N | |DN |

)

≤ Cm0

∫

B

[

r−1
(

− |z|
r
φ′(
( |z|

r

)
) + φ

( |z|
r

)) |N |2
|z|2−2γ0

+ |z|
r
φ
( |z|
r2

) |N | |DN |
|z|2−2γ0

]

≤ Cm0 r
γ0−1D(r)− Cr−1

∫

Br

r−1φ′( |z|
r

) |N |2
|z|1−γ0

,

and

Erri3 ≤ C

∫

M

(

|Y | |AM| |DN |2
(
|N |+ |DN |

)
+ |DY |

(
|AM| |DN | |N |2 + |DN |4

))

≤ Crγ0−1D(r)− CD(r)η
∫

B

r−1φ′( |z|
r

)
|DN |2 + C r−1D(r)η

∫

B

r−1φ
( |z|

r

) |N |2
|z|2−γ0

.

The errors Erri4 and Erri5 are the same as Erro4 and Erro5 respectively, in Section 5.2,
evaluated along a different vector field. Proceeding in the same way as in the estimate of
Erro4, we deduce

Erri4 =

∫

spt(T )\Im(F )

|div~TXi| d‖T‖+
∫

Im(F )\spt(T )

∣
∣div~TF

Xi

∣
∣ d‖TF‖

≤ C rγ0−1D(r) + C

∫

α d‖T −TF‖
︸ ︷︷ ︸

S(φ)

.

where α(p) = ϕ(p(p)) and ϕ(Ψ(z, w)) = r−2|z|φ
(
r−1|z|) − r−1φ′(r−1|z|). In particular

using (2.15) and the fact that −φ′ ≤ Cj on [0, 1], we infer

S(φ) ≤ Crγ0−1D(r) + C
j

r
‖T −TF‖(p−1(Ψ(Br \Br(1−1/j))) .

As for Err5i , we observe that it only appears in the cases (a) and (c) and arguing as in
Section 5.2 we can bound it as

Err5i ≤ I1 +

∣
∣
∣
∣

∫

〈X⊥
i , h(

~TF (p))〉 d‖TF‖
∣
∣
∣
∣

︸ ︷︷ ︸
I2

,

where h(v1 ∧ v2) :=
∑2

i=1AΣ(vi, vi) and I1 enjoys the same bounds as Err4i . Following the
argument of [8, Section 4.3] we can see that I2 enjoys the same bounds as Err1i and Err2i .
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To conclude the proof notice that, with analogous computation as in [4, Proposition 3.1],

d

dε

∣
∣
∣
ε=0

∫

M
|D(N ◦ Γε)|2 =

∫

M

(

2

Q
∑

i=1

〈DNi : (DNi ·DMY )〉 − |DN |2 divMY

)

. (6.15)

However, by the conformal invariance of the Dirichlet energy, we have
∫

M
|D(N ◦ Γε)|2 =

∫

B

|D(N ◦ Γ̂ε)|2 ,

where Γ̂ε is the one parameter family of diffeomorphisms generated by the vector field
Ŷ : B → B defined by

Ŷ (z, w) :=
|z|
r

φ

( |z|
r

)

ν .

Hence

d

dε

∣
∣
∣
ε=0

∫

M
|D(N ◦ Γε)|2 =

∫

B

(

2

Q
∑

i=1

〈DN i :
(

DN i ·DŶ
)

〉 − |DN |2 div Ŷ
)

, (6.16)

where the differentiation is taken with respect to the (local) flat structure of B.
In particular we conclude

d

dε

∣
∣
∣
ε=0

∫

M
|D(N ◦ Γε)|2 =

∫

Br

|z|
r2

φ′
( |z|

r

)

(2|DνN |2 − |DN |2) . (6.17)

Collecting together (6.15), (6.17) and the error estimates, and letting φ converge to the to
the indicator function of [−1, 1] (namely letting j ↑ ∞) we conclude the proof.

6.2. Proof of Lemma 6.2. The lemma is a very simple corollary of the estimates proven
so far. (6.4) is a simple consequence of the Poincaré inequality (5.1) and of (5.13). Similarly,
by Lemma 5.4, we have that Λ(r) ≤ CD(r), and therefore (6.7) follows in view of (6.4).
The same arguments hold for (6.8). Next for (6.5) we can estimate as follows:

|L(r)| ≤ Cm
1/2
0

∫

Br

|N | |DN | ≤ Cm
1/2
0

(∫ r

0

H(t) dt

)1
2

D
1
2 (r)

(5.1)

≤ Cm
1/2
0

(

C5.1

∫ r

0

tD(t) dt

)1
2

D
1
2 (r) ≤ Cm

1/2
0 rD(r) . (6.18)

Similarly

|L′(r)| ≤ Cm
1/2
0

∫

∂Br

|N | |DN | ≤ Cm
1/2
0 (D′(r)H(r))

1
2 . (6.19)

Finally, we notice that Proposition 6.1 implies
∣
∣
∣
∣

D′(r)

2
−
∫

∂Br

|DτN |2
∣
∣
∣
∣
≤ C EIV (r).
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Therefore, using the almost minimizing property in (4.5) and the Poincaré inequality we
infer that

D(r) ≤ (1 + C r)

[
rD′(r)

2(2 a+ b)
+

a(a+ b)H(r)

r(2 a+ b)

]

+ C(a) r EIV (r) + EQM(r) + C r1+σ D′(r) .

Absorbing the error term r1+σ D′(r) and dividing by (1 + C rσ) we get

D(r) ≤ rD′(r)

2(2 a+ b)
+

a(a+ b)H(r)

r(2 a+ b)
+ C(a) r EIV (r) + EQM(r) + C rσD(r) ,

from which (6.9) follows straightforwardly by noticing that EQM(r) + rD(r) ≤ C r EIV (r).
6.3. Proof of Corollary 6.3. Recall first thet η < γ0. We start with EBP (r). Notice
that, using H(t) ≤ C tD(t) together with the definition of F(r), we have

∫ r

0

(
1

tγ D(t)

)′
F(t) dt ≤ C

F(r)

rγ D(r)
+ C

∫ r

0

1

tγ D(t)

H(t)

t2−γ0
dt ≤ Crγ0−γ

Next, by a simple integration by parts and the fact that D(r) ≤ Cr2, we deduce
∫ r

0

1

tγD(t)

d

dt
‖T −TF‖(p−1(Ψ(Bt))) dt =

1

rγD(r)
‖T −TF‖(p−1(Ψ(Br)))

+

∫ r

0

(
1

tγD(t)

)′
‖T −TF‖(p−1(Ψ(Bt))) dt

(2.15)

≤ C
D1+η(r) + F(r)

rγ D(r)
+

∫ r

0

(
1

tγD(t)

)′
(
D(t)1+η + F(t)

)
dt ≤ C rη−γ . (6.20)

In a similar fashion we have
∫ r

0

m
1/2
0

tγ D(t)

∫

∂Bt

|η ◦ N (z, w)|
t1−γ0

dt ≤ m
1/2
0

rγ D(r)

∫

Br

|η ◦ N (z, w)|
|z|1−γ0

+

∫ r

0

(
1

tγD(t)

)′
m

1/2
0

∫

Bt

|η ◦ N (z, w)|
|z|1−γ0

(2.14)

≤ C
D1+η(r) + F(r)

rγ D(r)
+

∫ r

0

(
1

tγD(t)

)′
(
D(t)1+η + F(t)

)
dt ≤ C rη−γ .

(6.21)

so that ∫ r

0

EBP (t)

tγ D(t)
dt ≤ C rη−γ

To conclude, we estimate separately the two nonnegative functions ΣIV and ΣOV . In
particular

ΣIV (r) =

∫ r

0

EIV (t)
tγ D(t)

dt
(6.8)

≤ 2C6.2

∫ r

0

(

tγ0−γ−1 + t−γD(t)η−1 D′(t) +
EBP (t)

tγ D(t)

)

dt

≤C rη−γ
(
1 +D(t)

η/2
)
≤ C rη−γ , (6.22)



2-DIMENSIONAL REGULARITY THEORY 39

where in the second inequality we used D(t) ≤ C t2. Finally

ΣOV (r) =

∫ r

0

EOV (t)

t1+γD(t)
dt

(6.7)

≤ C6.2

∫ r

0

(
Dη(t)

t1+γ
+

F(t)

t1+γD(t)
+ t−γDη−1(t)D′(t) +

EBP (t)

tγ D(t)

)

dt

≤C rη−γ . (6.23)

7. Almost monotonicity and decay of the frequency function

In this section we study the asymptotic behaviour of the normal approximation N .
The first step consists in proving approximate monotonicity and decay estimates for the
frequency function.

For every r ∈ (0, 1) such that H(r) > 0, we set Ī(r) := rΩ(r)
H(r)

where we recall that

Ω(r) :=

{
D(r) in the cases (a) and (b) of Definition 0.1;
D(r) + L(r) in case (c).

Furthermore we define K̄(r) := Ī(r)−1 whenever Ω(r) 6= 0. By (6.5) there exists r0 > 0
such that

1

2
D(r) ≤ (1− C r)D(r) ≤ Ω(r) ≤ (1 + C r)D(r) ≤ 2D(r) ∀r ≤ r0 . (7.1)

Having fixed r0, K̄(r) is well defined whenever D(r) > 0 and hence, by the Poincaré
inequality, whenever Ī(r) is defined. Moreover, if for some ρ ≤ r0 K̄(ρ) is not well defined,
that is Ω(ρ) = 0, then obviously Ω(r) = D(r) = 0 for every r ≤ ρ.

We are now ready to state the first important monotonicity estimate. From now on we
assume of having fixed a γ

Theorem 7.1. There exists a constant C7.1 > 0 with the following property: if D(r) > 0
for some r ≤ r0, then (setting γ = 0 in (6.10) and (6.11)) the function

K̄(r) exp(−4r − 4ΣIV (r))− 4ΣOV (r) (7.2)

is monotone non-increasing on any interval [a, b] where D is nowhere 0. In particular,
either there is r̄ > 0 such that D(r̄) = 0 or K̄ is well-defined on ]0, r0[ and the limit
K0 := limr→0 K̄(r) exists.

A fundamental consequence of Theorem 7.1 is the following dichotomy.

Corollary 7.2. There exists r̄ > 0 such that

(A) either K̄(r) is well-defined for every r ∈]0, r0[, the limit

K0 := lim
r↓0

K̄(r) (7.3)

is positive and thus there is a constant C and a radius r̄ such that

C−1 rD(r) ≤ H(r) ≤ C rD(r) ∀ r ∈]0, r̄[ ; (7.4)

(B) or T p−1(Ψ(Br̄)) = Q JΨ(Br̄)K for some positive r̄.
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In turn, using the above dichotomy we will show

Theorem 7.3. Assume that condition (i) in Theorem 2.8 fails. Then the frequency Ī(r) is
well-defined for every sufficiently small r and its limit I0 = limr→0 Ī(r) = K−1

0 exists and
it is finite and positive. Moreover there exist constants λ, C7.3, H0, D0 > 0 such that, for
every r sufficiently small the following holds:

∣
∣I(r)− I0

∣
∣+

∣
∣
∣
∣

H(r)

r2I0+1
−H0

∣
∣
∣
∣
+

∣
∣
∣
∣

D(r)

r2I0
−D0

∣
∣
∣
∣
≤ C7.3 r

λ . (7.5)

7.1. Proof of Theorem 7.1. In the first step we claim the monotonicity of the function
K̄(r) exp(−ΣIV (r))−2ΣOV (r) on any interval contained in [a, b] on which D is everywhere
positive. Recalling that Ω and H are absolutely continuous functions, we can compute the
following derivative: for every r ∈ [a, b]

K̄′(r) =

(
H(r)

r

)′
1

Ω(r)
− H(r)

r

Ω′(r)

Ω2(r)
(5.3)

≤ 1

rΩ2(r)

(
2E(r)Ω(r)−D′(r)H(r) + |L′(r)|H(r)

)
. (7.6)

Then, either K̄′ ≤ 0, or the RHS of the inequality above is positive, that is

D′(r)H(r) ≤ 2E(r)Ω(r) + |L′(r)|H(r)
(6.6)

≤ 2E(r)Ω(r) + rD′(r)H(r) +
H2(r)

r
.

In turn, using H(r) ≤ C rD(r) ≤ C rΩ(r), the latter inequality implies

D′(r)H(r) ≤ C E(r)Ω(r) + C rΩ2(r) . (7.7)

From this we deduce

E2(r) ≤ H(r)G(r) ≤ H(r)D′(r) ≤ CΩ2(r) +
E2(r)

2

which implies that E(r) ≤ CΩ(r) and so, by (6.6),

|L′(r)| ≤ Cm
1/2
0 (D′(r)H(r))

1/2 ≤ Cm
1/2
0 Ω(r) . (7.8)

Next using again the Cauchy-Schwarz inequality and (5.4), we have

Ω(r)E(r) ≤ Ω(r)H(r)
1/2 G(r)

1/2 ≤ Ω(r)2

2
+

H(r)G(r)

2

≤ Ω(r)E(r)

2
+

Ω(r) EOV (r)

2
+

H(r)G(r)

2
,

which implies

Ω(r)E(r) ≤ H(r)G(r) +Ω(r) EOV (r) . (7.9)
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Collecting all these estimates together and using (6.2), we conclude that, if K̄′(r) ≥ 0,
then

K̄′(r)
(7.6)&(7.9)

≤ 1

rΩ2(r)

(
2H(r)G(r)−D′(r)H(r) + |L′(r)|H(r) + 2Ω(r) EOV (r)

)

(6.2)&(7.8)

≤ 1

rΩ2(r)

(
2H(r)G(r)− 2H(r)G(r) +Ω(r)H(r) +H(r) EIV (r) + 2Ω(r) EOV (r)

)

≤ 2
EOV (r)

rΩ(r)
+ K̄(r)

(

1 +
EIV (r)
Ω(r)

)

≤ 4
EOV (r)

rD(r)
+ 4 K̄(r)

(

1 +
EIV (r)
D(r)

)

. (7.10)

On the other hand the final inequality

K̄′(r) ≤ 4
EOV (r)

rD(r)
+ 4 K̄(r)

(

1 +
EIV (r)
D(r)

)

is certainly correct when K̄′(r) ≤ 0, because the right hand side is positive. The mono-
tonicity of the function in (7.2) is then obvious.

Next, as already observed, either D is always positive, or it vanishes on some interval
]0, r̄[. If D is always positive, then K̄ is well defined on ]0, r0[ and the existence of the limit
K0 := limr↓0 K̄(r) is a direct consequence of (7.2) and Corollary 6.3.

7.2. Proof of Corollary 7.2. First of all observe that, if D(r̄) vanishes, then N ≡ Q J0K
on Br̄. In particular by (2.15) we conclude that we are in the alternative (B). We can thus
assume, without loss of generality, that D is positive on ]0, r0[. Assuming that K0 vanishes
we will then reach a contradiction.

Under the assumption K0 = 0, consider the monotonicity of K̄(r) exp(−4ΣIV (r)) −
4ΣOV (r) between two radii 0 < s < r and let s → 0 to get

K̄(r) ≤ 4 e4r+4ΣIV (r)ΣOV (r) ≤ CΣOV (r) ,

where the last inequality holds for r sufficiently small, since ΣIV (r) ≤ Crη (recall that we
have set γ = 0). Next observe that, since the function ΣOV (r) is non-decreasing,

F(r)

D(r)
≤ 1

D(r)

∫ r

0

H(s)

s2−γ0

D(s)

D(s)
ds ≤ C

∫ r

0

K̄(s)

s1−γ0
ds ≤ C rγ0 ΣOV (r) . (7.11)

Moreover, integrating by parts:
∫ r

0

1

D(s)

d

ds
‖T −TF‖(p−1(Ψ(Bs))) ds

(2.15)

≤ C
D1+η(r) + F(r)

D(r)
+ C

∫ r

0

(
1

D(s)

)′
(
D1+η(s) + F(s)

)
ds

≤CDη(r) + C rγ0ΣOV (r) + C
F(r)

D(r)
+ C

∫ r

0

F′(s)

D(s)
ds

≤CDη(r) + C rγ0ΣOV (r) + C

∫ r

0

K̄(s)

s1−γ0
ds ≤ CDη(r) + C rγ0ΣOV (r) , (7.12)

where we have used repeatedly (7.1).
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Using the latter in the formula for EOV we also conclude

ΣOV (r)

≤ C

∫ r

0

1

sD(s)

(

D(s)1+η + sDη(s)D′(s) + F(s) + s
d

ds
‖T −TF‖(p−1(Ψ(Bs)))

)

ds

≤ C rηD(r)
η/2 + Crγ0 ΣOV (r) .

Hence, for r sufficiently small,

K̄(r) ≤ CΣOV (r) ≤ CD(r)
η/2 . (7.13)

In particular this implies that

H(r) ≤ C rD(r)1+
η/2 . (7.14)

Combining this with (5.4) and the Cauchy-Schwarz inequality, we deduce

1

2
D(r) ≤ Ω(r) ≤ E(r)

r
+ EOV (r) ≤

(
H(r)

rD(r)η/4

)1/2
(
rD′(r)D(r)

η/4
)1/2

+ EOV (r)

(7.14)

≤ CD(r)1+
η/4 + C rD(r)

η/4D′(r) + EOV (r) .

Dividing the expression above by rD(r), integrating between two radii 0 < s < r and using
the bound D(r) ≤ C r2 we obtain

log
(r

s

)

≤ C

∫ r

s

(
D(ρ)η/4

ρ
+D(ρ)

η/4−1D′(ρ) +
EOV (ρ)

ρD(ρ)

)

dρ ≤ C r
η/2 .

Sending s → 0 we get a contradiction.

7.3. Proof of Theorem 7.3. Clearly, if (i) in Theorem 2.8 does not hold, then D is
always positive and we are in alternative (A) of Corollary 7.2. Thus K0 is positive and the
first statement is obvious.

Let K(r) := I(r)−1 and observe that by (7.1) we have

(1− C r)I(r) ≤ Ī(r) ≤ (1 + C r)I(r) , ∀0 ≤ r ≤ r0 ,

which implies

(1− C r)K̄(r) ≤ K(r) ≤ (1 + C r)K̄(r) ∀ 0 ≤ r ≤ r0 ,

so that in particular K(r) ≤ C K̄(r) < ∞ for every 0 < r < r0 and K(r) → K0 as r → 0.
Using the monotonicity formula of Theorem 7.1 together with Corollary 6.3 we have

K̄(r)−K0 ≤ K0(exp(4r + 4ΣOV (r))− 1) + 4ΣIV (r) exp(4r + 4ΣOV (r)) ≤ Crη . (7.15)

Therefore
K(r)−K0 ≤ C rη + CK(r) r ≤ C rη . (7.16)

To control K(r) − K0 from below we apply (6.9) with a = I0 = 1
K0

and b = λ ≤
min{η/2, b0(I0)} to infer, after dividing by rD(r), that

−D′(r)

D(r)
≤ 2

r
(I0(I0 + λ)K(r)− (2I0 + λ)) .
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Multiplying this expression by K(r) > 0 and adding 2/r, we get

2

r
− D′(r)

D(r)
K(r) ≤ 2

r

[
1 + I0(I0 + λ)K2(r)− (2I0 + λ)K(r)

]
+

C EIV (r)
D(r)

≤ 2

r
I0

(

K(r)− 1

I0

)

((I0 + λ)K(r)− 1) +
C EIV (r)
D(r)

(7.17)

Since (I0 + λ)K(r) converges to 1 + λK0, we easily deduce that for r small enough (I0 +
λ)K(r)− 1 ≥ λ

2
K0. Using this together with (7.16), we deduce from (7.17) that

2

r
− D′(r)

D(r)
≤ λ

r

(

K(r)− 1

I0

)

+
C EIV (r)
D(r)

+ C
rη

r
. (7.18)

We next compute

K′(r) =

(
H(r)

r

)′
1

D(r)
− H(r)

rD(r)

D′(r)

D(r)

(5.3)&(7.1)

≤ 2E(r)

rD(r)
− D′(r)

D(r)
K(r)

(5.4)&(7.1)

≤ 2

r
+ C − D′(r)

D(r)
K(r) + C

EOV (r)

rD(r)
(7.18)

≤ λ

r

(

K(r)− 1

I0

)

+
C EIV (r)
D(r)

+ C
EOV (r)

rD(r)
+ C

rη

r
. (7.19)

Recalling that K(r) ≤ C, we deduce

d

dr

[
K(r)−K0

rλ

]

≤ C
EOV (r)

r1+λD(r)
+ C

EIV (r)
rλ D(r)

+ C
1

r1+λ−η
. (7.20)

Integrating (7.20) on the interval ]s, r[ and using (6.13), we get

K(r)−K0 ≤
rλ

sλ
(K(s)−K0) + C rη−λ

that is K(s)−K0 ≥ −Csλ. The inequality |K(r)−K0| ≤ C rλ easily implies |I(r)− I0| ≤
C rλ.

For what concerns the other inequalities we compute
[

log

(
H(r)

r2I0+1

)]′
=

H′(r)

H(r)
− 2 I0 + 1

r
=

2E(r)

rH(r)
− 2 I0

r
≤ 2D(r)

H(r)
− 2 I0

r
+ C

EOV (r)

H(r)

=
2

r
(I(r)− I0) + C

EOV (r)

H(r)
, (7.21)

and similarly
[

log

(
H(r)

r2I0+1

)]′
≥ 2

r
(I(r)− I0)− C

EOV (r)

H(r)
. (7.22)

Using that |I(r) − I0| ≤ Crλ, for r small enough we have the bound rD(r) ≤ 2I0H(r).
Hence we can use (6.13) in the integrals of (7.21) and (7.22) to deduce the existence of the
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limit

H0 := lim
s↓0

H(s)

s2I0+1
, with

∣
∣
∣
∣

H(r)

r2I0+1
−H0

∣
∣
∣
∣
≤ C rλ.

Moreover, from (7.21) we also infer that for r sufficiently small

H0 ≥
H(r)

r2I0+1
e−C rλ > 0.

Finally the last assertion follows simply setting D0 := I0 ·H0 and from
∣
∣
∣
∣

D(r)

r2 I0
−D0

∣
∣
∣
∣
=

∣
∣
∣
∣
I(r)

H(r)

r2 I0+1
− I0H0

∣
∣
∣
∣

≤ |I(r)− I0|
H(r)

r2 I0+1
+ I0

∣
∣
∣
∣

H(r)

r2 I0+1
−H0

∣
∣
∣
∣
≤ C rλ.

8. Blow-up and proof of Theorem 2.8

As a consequence of the decay estimate in Theorem 7.3 we can show that suitable
rescaling of the normal approximation N converge to a unique limiting profile. To this aim
we consider for every r ∈ (0, 1) the functions fr : ∂B1 → AQ1(R

2+n) given by

fr(z, w) :=
N (ir(z, w))

rI0
,

where we recall that ir(z, w) =
(
rz, r1/Q̄w

)
. We recall also that T0M = R

2 × {0}, and
T0Σ = R2 × Rn̄ × {0}. In the following, with a slight abuse of notation, we write Rn̄ for
the subspace {0} × Rn̄ × {0}.

The final step in the proof of Theorem 2.8 is then the following proposition.

Proposition 8.1. Assume alternative (i) in Theorem 2.8 fails and let I0 and λ be the
positive numbers of Theorem 7.3. Then I0 > 1 and there exists a function f0 : ∂B1 →
AQ(R

n̄) such that

(i) η ◦ f0 = 0 and f0 6≡ Q1 J0K;
(ii) for every r sufficiently small

G(fr(z, w), f0(z, w)) ≤ C r
λ/16 ∀ (z, w) ∈ ∂B1 ; (8.1)

(iii) the I0-homogeneous extension g(z, w) := |z|I0f0
(

z
|z| ,

w
|w|

)

is nontrivial and Dir-

minimizing.

In particular, by (iii) Im(g) \ {0} ⊂ R2+n is a real analytic submanifold.

Theorem 2.8 follows immediately from Proposition 8.1 and Theorem 7.3.

Proof of Theorem 2.8. Since we have identitified Rn̄ with {0}×Rn̄×{0}, it is obvious that
the map g has all the properties claimed in (ii), namely it is Dir-minimizing, η ◦ g ≡ 0 and
it is nontrivial. (2.16) is a corollary of (8.1) provided a0 ≤ λ

16
. Next note that (2.18) has
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been shown in Theorem 5.1. As for (2.17) observe that, if 4ρ ≤ r < 1, then, by Theorem
7.3,

D0(r− 2ρ)2I0 −C(r− 2ρ)2I0+λ ≤ D(r− 2ρ) ≤ D(r+2ρ) ≤ D0(r+2ρ)2I0 +C(r+2ρ)2I0+λ .

Since 2I0 > 2, (2.17) follows easily from
∫

Br+2ρ\Br−2ρ

|DN |2 = D(r + 2ρ)−D(r − 2ρ) ,

provided a0 ≤ λ. �

The rest of this final section of the note is devoted to the proof Proposition 8.1, which
is split in several steps. Before starting with it, let us however observe that the conclusion
I0 > 1 is an obvious consequence of the decay estimates of Theorem 7.3 and the fact that
D(r) ≤ Cr2+2γ0 .

8.1. Step 1: uniqueness of the limit f0. For r sufficienly small and s ∈ [ r
2
, r], we start

estimating the following quantity:
∫

∂B1

G(fr, fs)2 ≤ (r − s)

∫

∂B1

∫ r

s

∣
∣
∣
∣

d

dt
ft(z, w)

∣
∣
∣
∣

2

dt . (8.2)

Using the differentiability properties of Lipschitz multiple valued functions and the 1-
dimensional theory in [4, Section 1.1.2] (note that t 7→ N (it(z, w)) is a Lipschitz map), we
easily infer that
∣
∣
∣
∣

d

dt
ft(z, w)

∣
∣
∣
∣

2

=

Q
∑

j=1

∣
∣
∣
∣

DN j(it(z, w)) · z
tI0

− I0
N j(it(z, w))

tI0+1

∣
∣
∣
∣

2

=
|z|2|∂r̂N |2(it(z, w))

t2I0
− 2 I0

|z|
t2I0+1

Q
∑

j=1

〈∂r̂N j,N j〉(it(z, w)) +
|N |2(it(z, w))

t2I0+2
.

Therefore, by the change of variable (z′, w′) = it(z, w) in (8.2) we infer that
∫

∂B1

G(fr, fs)2 ≤
r

2

∫ r

r/2

(
G(t)

t2I0+1
− 2 I0

E(t)

t2I0+2
+ I20

H(t)

t2I0+3

)

dt

≤ r

2

∫ r

r/2

(
D′(t)

2t2I0+1
− 2 I0

D(t)

t2I0+2
+ I20

H(t)

t2I0+3
+ C

EIV (t)
t2I0+1

+ C
EOV (t)

t2I0+2

)

dt

=
r

2

∫ r

r/2

[
1

2t

(
D(t)

t2I0

)′
+ I0

H(t)

t2I0+3
(I0 − I(t)) + C

EIV (t)
t2I0+1

+ C
EOV (t)

t2I0+2

]

dt.

Using Theorem 7.3, we can then conclude that
∫

∂B1

G(fr, fs)2 ≤ C

∣
∣
∣
∣
∣

D(r)

r2I0
− D

(
r
2

)

(
r
2

)2I0

∣
∣
∣
∣
∣
+ C

∫ r

r/2

[ |I0 − I(t)|
t

+ C
EIV (t)
D(t)

+ C
EOV (t)

tD(t)

]

dt

≤ C rλ. (8.3)
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By an elementary dyadic argument analogous to that of [4, Theorem 5.3], we then infer
the existence of f0 : ∂B1 → AQ(R

2+n) such that, for r sufficiently small,

‖G(fr, f0)‖2L2(∂B1)
≤ C rλ. (8.4)

8.2. Step 2: uniform convergence. Set next h(z, w) := G
(

N (z,w)

|z|I0 ,
N (i1/2(z,w))

|z/2|I0

)

. It fol-

lows from (8.3) that for r sufficiently small
∫

Br

h2 ≤
∫ r

0

∫

∂B1

G(ft, ft/2)
2 t dt

(8.3)

≤ C r2+λ , (8.5)

and from (2.12) and (2.13)

Lip(h|B1\Bs) ≤ C s−I0. (8.6)

Moreover, for every ρ < |z|/4 we claim the estimate
∫

Bρ(z,w)

|Dh|2 ≤ C ρ+ C |z|λ . (8.7)

Indeed |Dh| ≤ C
∣
∣
∣D
(

N

|z|I0

)∣
∣
∣ and by Theorem 7.3

∫

Bρ(z,w)

∣
∣
∣
∣
D

(
N

|z|I0
)∣
∣
∣
∣

2

≤ 2

∫ |z|+ρ

|z|−ρ

∫

∂Bt

( |DN |2
t2I0

+ I20
|N |2
t2I0+2

)

dt

≤ 2

∫ |z|+ρ

|z|−ρ

((
D(t)

t2I0

)′
+ 2 I0

D(t)

t2I0+1
+ I20

H(t)

t2I0+2

)

dt

≤ C (|z|+ ρ)λ + C log

( |z|+ ρ

|z| − ρ

)

≤ C |z|λ + C
ρ

|z| .

In particular, applying (8.5), (8.6) and (8.7) with ρ = |z|1+λ/4, we infer that for every point
p = (z, w) ∈ BQ̄ with |z| sufficiently small

h(p) ≤
∣
∣
∣
∣
∣
h(p)−−

∫

B
|z|1+λ/4

2k

(p)

h

∣
∣
∣
∣
∣
+

k−1∑

i=0

∣
∣
∣
∣
∣
−
∫

B
|z|1+λ/4

2i

(p)

h−−
∫

B
|z|1+λ/4

2i+1

(p)

h

∣
∣
∣
∣
∣
+−
∫

B
|z|1+λ/4 (p)

h

≤ Lip(h|B1(p)\B|z|/2(p))
|z|1+λ/4

2k
+ C

k−1∑

i=0

|z|1+λ/4

2i
−
∫

B
|z|1+λ/4

2i

(p)

|Dh|+−
∫

B
|z|1+λ/4 (p)

h

(8.6)

≤ C |z|1+λ/4 + C

k−1∑

i=0

(
∫

B
|z|1+λ/4

|Dh|2
) 1

2

+
C

|z|1+λ/4

(
∫

B2|z|

|h|2
) 1

2

, (8.8)

where we have used the standard Poincaré inequality
∣
∣
∣
∣
∣
−
∫

Br

f −−
∫

B r
2

f

∣
∣
∣
∣
∣
≤ C r−

∫

Br

|Df | f ∈ W 1,2.
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Now choose k ∈ N such that |z|1+λ/4

2k
< |z|1+λ/4+I0 ≤ |z|1+λ/4

2k−1 (in particular k ≤ | log |z||) and
use (8.5) together with (8.7) to bound

h(z, w) ≤ C |z|1+λ/4 + C | log |z|| |z|λ/8 + C |z|λ/4 ≤ C |z|λ/16 , (8.9)

This gives that, for a sufficiently small r,

max
∂B1

G(fr, fr/2) ≤ Cr
λ/16 .

Thus

max
∂B1

G(fr, f0) ≤
∞∑

k=0

G(fr2−k , fr2−k−1) ≤ Cr
λ/16 .

8.3. Step 3: nontriviality of the limit and other properties. To show that f0 6=
Q J0K it is enough to observe that, by Theorem 7.3,

∫

∂B1

|f0|2 = lim
r→0

∫

∂B1

|fr|2 = lim
r→0

H(r)

r2I0+1
= H0 > 0.

In order to show that η ◦ f0 ≡ 0, we notice that by a simple slicing argument combined
with (2.14) there exists a sequence of radii rk ∈ [2−k−1, 2−k] such that

∫

∂Brk

|η ◦ N | ≤ 2k+1

∫

B
2−k\B2−k−1

|η ◦ N | ≤ C rγ0k

∫

B
2−k

|z|γ0−1|η ◦ N |

≤ C rγ0+2η
k D(2rk) ≤ C rγ0+2η+2I0

k , (8.10)

from which
∫

∂B1

|η ◦ f0| = lim
rk→0

∫

∂B1

|η ◦ frk | = lim
rk→0

r−I0−1
k

∫

∂Br

|η ◦ N |

≤ C lim
rk→0

rγ0+2η+I0−1
k = 0.

Next we show that f0 takes values in R
n̄. We start by showing that f0 must take values in

T0Σ = R2+n̄×{0}. Indeed, if we set fr(z, w) := N̄ (ir(z, w)), using (A.3) and |N |(ir(z, w)) ≤
C r1+γ0/2 we conclude

∫

∂B1

G(fr, f̄r)2 ≤
Cr2

r2I0+1

∫

∂Br

|N |2 ≤ Cr2 ,

which implies that f0(z, w) ∈ AQ(T0Σ).
Next observe that fr(z, w) =

∑

i JN i(ir(z, w))K has the property that each N i(ir(z, w))
is orthogonal to TΨ(ir(z,w))M. In particular, if |z| = 1 and r ↓ 0, the tangent planes
TΨ(ir(z,w))M converge to R2 × {0}: it follows, by the uniform convergence of fr to f0, that
f0(z, w) =

∑

i J(f0)i(z, w)K for some (f0)i(z, w) which are orthogonal to R2×{0}. We thus
conclude that each (f0)i(z, w) belongs to {0} × Rn̄ × {0}.
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8.4. Step 4: Minimality of g. In order to complete the proof of Proposition 8.1 we need
to show that g is Dir-minimizing. Given the homogeneity of g in the radial direction, it
suffices to show that there is no W 1,2 multifunction h : B1 → AQ(R

n̄) which has the same
trace of g on ∂B1 and less energy on B1. Assume thus by contradiction that there is an
h ∈ W 1,2(B1,AQ(R

n̄)) such that h|∂B1 and
∫

|Dh|2 ≤
∫

|Dg|2 − δ (8.11)

for some positive δ > 0. Recall the definition of W 1,2 according to Remark 2.7: using the
map W in there and the functions h ◦ W and g ◦ W we can use the theory of [4] and
assume that h ◦W is a Dir-minimizer on the euclidean disk D1 ⊂ R2. Observe also that,
since η ◦ g ≡ 0, we must have η ◦ h ≡ 0 as well. Indeed since h ◦W = g ◦W on ∂D1, we
have η ◦ h ◦W = η ◦ g ◦W = 0 on the boundary and considering that

∫

D1

∑

i

|D(hi ◦W − η ◦ h ◦W)|2 ≤
∫

D1

|D(h ◦W)|2 −Q

∫

D1

|D(η ◦ h ◦W)|2 ,

the minimality of h ◦W forces the Dirichlet energy of η ◦ h ◦W to vanish identically.
Using (2.14), the decayD(r) ≤ C r2I0 and a Fubini-type argument we can find a sequence

of radii sj → 0 such that
∫

∂B1

|Df0|2 ≤ lim sup
j

∫

∂B1

|Dfsj |2 ≤ lim sup
j

D′(sj)

s2I0−1
j

≤ C . (8.12)

We now wish to “smooth” h, i.e. to approximate it with a sequence of Lipschitz maps
hε such that η ◦ hε ≡ 0,

∫

B1

|Dhε|2 − |Dh|2 ≤ ε2 (8.13)

∫

∂B1

G(f0, hε)
2 +

∣
∣
∣
∣
∣

∫

∂B1

|Df0|2 − |Dhε|2
∣
∣
∣
∣
∣
≤ ε2 . (8.14)

We would like to appeal to [6, Lemma 3.5], but there is the slight technical complication
that B is not regular. We postpone this technical step and continue with the argument
assuming the existence of the approximations hε.

Next we would like to apply [6, Lemma 3.6] to hε and pT0Σ(fsj ) =: f̄sj , to get a family

of competitor functions (f̂sj) ⊂ W 1,2(B1,AQ(R
2+n̄)), such that f̂sj |∂B1 = f̄sj |∂B1) and

∫

B1

|Df̂sj |2 ≤
∫

B1

|Dhε|2 + ε

∫

∂B1

(
|Dτhε|2 + |Dτ f̄sj |2

)
+

C

ε

∫

∂B1

G(hε, f̄sj)
2 , (8.15)

Lip(f̂sj) ≤ C

(

Lip(hε) + Lip(f̄sj) +
1

ε
sup
∂B1

G(f̄sj , hε)

)

(8.16)

η ◦ f̂sj = η ◦ f̄sj . (8.17)



2-DIMENSIONAL REGULARITY THEORY 49

Again, this is not straightforward because [6, Lemma 3.6] is stated for euclidean domains.
We postpone this second technical problem and continue with our argument assuming the
existence of f̂sj .

We are now ready to define our competitor function. We set L̄sj(z, w) := sI0j f̂sj(i1/sj (z, w))
and, observing that L̄sj takes value in AQ(T0Σ), we use (3.1) to define a corresponding Lsj ,
which clearly is a competitor N in Bsj according to Definition 3.1. Moreover

Lip(Lsj) ≤ C sI0+1
j Lip(f̂sj |B1)

(8.6)

≤ C sj
η .

Therefore we can apply Proposition 3.2 with L̄ = L̄sj . In particular, taking into account
Theorem 7.3 and (8.12), we conclude that

∫

Bsj

|DN̄ |2 ≤ (1 + Csj)

∫

Bsj

|DL̄sj |2 + Cm
1/2
0

∫

Bsj

|z|γ0−1|η ◦ Lsj |+ Cs2I0+η
j .

Next, recall the inequality (4.6):
∫

Bsj

|z|γ0−1|η ◦ Lsj | ≤ C

∫

Bsj

|z|γ0−1|η ◦ L̄sj |+ C

∫

Bsj

|z|γ0−1|L̄sj |2 .

By (8.17) the first term in the right hand side equals indeed

C

∫

Bsj

|z|γ0−1|η ◦ N̄ | ≤ CsηjD(sj) ≤ Cs2I0+η
j .

For the second term we use the Poincaré inequality
∫

Bsj

|z|γ0−1|L̄sj |2 ≤ Cs1+γ0
j

∫

Bsj

|DL̄sj |2 + Csγ0j

∫

∂Bsj

|L̄sj |2 , (8.18)

whose proof will be given in Lemma A.1.
Using that

∫

∂Bsj

|L̄sj |2 =
∫

∂Bsj

|N̄ |2 = H(sj) ≤ Cs2I0+1
j ,

we easily conclude that
∫

Bsj

|DN̄ |2 ≤ (1 + Csj)

∫

Bsj

|DL̄sj |2 + Cs2I0+η
j . (8.19)

Changing variables and dividing by s2I0j we infer that

∫

B1

|Df̄sj | ≤
∫

B1

|Df̂sj |2 + Csηj . (8.20)
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Using (8.13), (8.14) and (8.15), we conclude
∫

B1

|Df̄sj |2 ≤
∫

B1

|Dh|2 + Csηj + Cε+
C

ε

∫

∂B1

G(f0, f̄sj)2

≤
∫

B1

|Dg|2 − δ + Csηj + Cε+
C

ε

∫

∂B1

G(f0, f̄sj)2 ,

where the constant C is independent of ε. In particular, if we fix ε sufficiently small and
we then let sj ↓ 0, by the uniform convergence of fsj to f0 on ∂B1 we conclude

lim sup
j→∞

∫

B1

|Df̄sj |2 ≤
∫

B1

|Dg|2 − δ

2
.

Since however fsj → g in B1, the latter inequality contradicts the semicontinuity of the
Dirichlet energy.

8.5. Step 5: Technical leftovers. First of all we show the existence of the map hε as in
(8.13) and (8.14). We consider h ◦W, which is defined on the closed unit disk D̄1 ⊂ R2.

We then can apply [6, Lemma 3.5] to the latter map and generate approximations ĥε which
satisfy the bounds (8.13) and (8.14) with D1 in place of B1 and h ◦W in place of h. The

maps hε := ĥε ◦ W would then satisfy the desired estimates because of the conformality
of W−1 (which keeps the Dirichlet energy invariant) and its regularity in B1 \ {0} (which
results into the loss of a constant factor in (8.14)). However the resulting map would not
be Lipschitz because of the singularity of W−1 in the origin. To overcome this difficulty it
suffices to perturb slightly ĥε so that it is constant in a small neighborhood of the origin.
As for the condition η ◦ hε ≡ 0, this can easily be achieved subtracting the average to
whichever extension satisfies (8.13) and (8.14).

Secondly we show the existence of f̂sj . First of all we observe that the condition (8.17)
can be easily achieved after we prove the existence of a map which satisfies the other two
conditions: as above it suffices to subtract the average of this map and add back η ◦ f̄sj .
At this point we observe that it suffices, as above, to compose with the map W, apply [4,
Lemma 2.14] and [5, Lemma 3.6] and compose the resulting map with W−1: indeed the
latter would coincide with hε ◦W on D1−ε and on the complement W−1 is regular.

Appendix A. Some useful lemmas.

The first lemma is a simple version of the Poincaré inequality for W 1,2 functions.

Lemma A.1. There exists a universal constant C > 0 such that the following two inequal-
ities hold for every f ∈ W 1,2(Br,AQ) with Br ⊂ BQ:

∫

Br

|f |2 ≤ Cr2
∫

Br

|Df |2 + Cr

∫

∂Br

|f |2 (A.1)

∫

Br

|z|γ0−1|f |2 ≤ C r1+γ0

∫

Br

|Df |2 + C rγ0
∫

∂B1

|f |2 . (A.2)
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Proof. By approximation we can assume, without loss of generality, that f is Lipschitz
and, by scaling, it suffices to show the inequalities (A.1) and (A.2) on the ball B1. Fixing
|z| = 1 and integrating along rays

|f(rz, r1/Qw)|2 ≤ 2|f(z, w)|2 + 2

∫ 1

r

|Df(tz, t1/Qw)|2 dt .

Using radial coordinates we then conclude
∫

B1

|z|γ0−1|f |2 ≤ C

∫

∂B1

|f |2 +
∫

∂B1

∫ 1

0

rγ0

∫ 1

r

|Df(tz, t
1/Qw)|2 dt dr dz .

Using Fubini the latter integral can be rewritten as
∫ 1

0

∫

∂B1

|Df(tz, t
1/Qw)|2

∫ t

0

rγ0 dt dz dr ≤
∫ 1

0

t

∫

∂B1

|Df(tz, t
1/Qw)|2 dz dr .

This completes the proof of (A.2). The proof of (A.1) is a simple variation of this one and
is left to the reader. �

Lemma A.2. Let L̄ : BQ̄ → AQ(R
2+n̄) be Lipschitz and consider the map L : BQ̄ →

AQ(R
2+n) defined by (3.1). Then there exists a constant C := C(‖Ψ0‖C3) > 0 such that

G(L , L̄)(z, w) ≤ C r |L̄|(z, w) + C |L̄|2(z, w) , ∀(z, w) ∈ Br (A.3)
∫

Br

|DL|2 ≤ (1 + Cr)

∫

Br

|DL̄|2 + C r

∫

∂Br

|L̄|2 . (A.4)

Proof. For what concerns (A.3), observe that DΨ(0) = 0 implies ‖DΨ‖L∞(Br) ≤ Cr.
Therefore, by the C3 regularity of Ψ, we get

G(L , L̄)(z, w) =

Q
∑

j=1

|Ψ(p0(Ψ) + L̄j)−Ψ(p0(Ψ))|(z, w)

≤ ‖DΨ‖(Ψ(z, w)) |L̄|(z, w) + ‖AΣ‖ |L̄|2(z, w)
≤ C r |L̄|(z, w) + C |L̄|2 .

An analogous computation gives
∫

Br

|DL|2 ≤ (1 + Cr)

∫

Br

|DL̄|2 + C

∫

Br

|L̄|2

and we conclude (A.4) using Lemma A.1. �
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