Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, but we build linear outer approximations of the image set in an adaptive way. We are able to guarantee correctness in terms of detecting both the efficient and the nondominated set of multiobjective mixed integer convex problems according to a prescribed precision. As far as we know, the procedure we present is the first non-scalarization-based deterministic algorithm devised to handle this class of problems. Our numerical experiments show results on biobjective and triobjective mixed integer convex instances.

Solving Multiobjective Mixed Integer Convex Optimization Problems / De Santis, Marianna; Eichfelder, Gabriele; Niebling, Julia; Rocktäschel, Stefan. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - 30:4(2020), pp. 3122-3145. [10.1137/19M1264709]

Solving Multiobjective Mixed Integer Convex Optimization Problems

De Santis, Marianna;
2020

Abstract

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, but we build linear outer approximations of the image set in an adaptive way. We are able to guarantee correctness in terms of detecting both the efficient and the nondominated set of multiobjective mixed integer convex problems according to a prescribed precision. As far as we know, the procedure we present is the first non-scalarization-based deterministic algorithm devised to handle this class of problems. Our numerical experiments show results on biobjective and triobjective mixed integer convex instances.
2020
Multiobjective Optimization; Mixed Integer Convex Programming; Outer Approximations;
01 Pubblicazione su rivista::01a Articolo in rivista
Solving Multiobjective Mixed Integer Convex Optimization Problems / De Santis, Marianna; Eichfelder, Gabriele; Niebling, Julia; Rocktäschel, Stefan. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - 30:4(2020), pp. 3122-3145. [10.1137/19M1264709]
File allegati a questo prodotto
File Dimensione Formato  
DeSantis_postprint_Solving-multiobjective_2020.pdf

accesso aperto

Note: DOI. 10.1137/19M1264709
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF
DeSantis_Solving-multiobjective_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.51 MB
Formato Adobe PDF
1.51 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1461936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 21
social impact