
Solving Multiobjective Mixed Integer
Convex Optimization Problems

Marianna de Santis∗, Gabriele Eichfelder∗∗, Julia Niebling∗∗, Stefan Rocktäschel∗∗

July 28, 2020

Abstract

Multiobjective mixed integer convex optimization refers to mathematical pro-
gramming problems where more than one convex objective function needs to be
optimized simultaneously and some of the variables are constrained to take inte-
ger values. We present a branch-and-bound method based on the use of properly
defined lower bounds. We do not simply rely on convex relaxations, but we build
linear outer approximations of the image set in an adaptive way. We are able to
guarantee correctness in terms of detecting both the efficient and the nondominated
set of multiobjective mixed integer convex problems according to a prescribed pre-
cision. As far as we know, the procedure we present is the first non-scalarization
based deterministic algorithm devised to handle this class of problems. Our numer-
ical experiments show results on biobjective and triobjective mixed integer convex
instances.

Key Words: Multiobjective Optimization, Mixed Integer Convex Programming

Mathematics subject classifications (MSC 2010): 90C11, 90C26, 90C29

1 Introduction

Multiobjective programming is concerned with mathematical problems where more than
one objective function needs to be optimized simultaneously. When the problem considered
involves both continuous and integer variables we are in the context of multiobjective
mixed integer programming. In this paper, we focus on multiobjective mixed integer
programming problems of the following form:

min (f1(x), . . . , fm(x))T

s.t. gk(x) ≤ 0 k = 1, . . . , p
x ∈ B := [l, u]
xi ∈ Z ∀i ∈ I,

(MOMIC)

∗Department of Computer, Control and Management Engineering, Sapienza Università di Roma, Via
Ariosto 25 00185 Roma, Italy, mdesantis@diag.uniroma1.it

∗∗Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Germany,
{gabriele.eichfelder,julia.niebling,stefan.rocktaeschel}@tu-ilmenau.de

1

where fj, gk : B → R; j = 1, . . . ,m; k = 1, . . . , p are convex and continuously differ-
entiable functions. The vectors l, u ∈ Rn are lower and upper bounds on the decision
variables x ∈ Rn and define the box B. The index set I ⊆ {1, . . . , n} specifies which
variables have to take integer values. We assume w.l.o.g. li, ui ∈ Z for all i ∈ I. Note
that problem (MOMIC) is nonconvex because of the presence of integrality constraints.
However, when all the integer variables are fixed it reduces to a continuous convex problem
as both the objective and constraint functions are convex. This is the reason why we call
Problem (MOMIC) a multiobjective mixed integer convex programming problem. The
image of the feasible set of the problem under the vector-valued function f : Rn → Rm
represents the feasible set in the criterion space, or the image set.

Multiobjective mixed integer optimization problems arise in many application fields
such as location or production planning, finance, manufacturing, and emergency manage-
ment (see e.g. [18, 32, 39]). As an example we can think of the uncapacitated facility
location problem, studied in the single-objective case in [23]. The first objective hereby is
to decide which facilities to build in order to minimize costs. As a second objective func-
tion one could consider the total negative impact on the environment with the building
plan for the facilities, e.g. the carbon emissions.

Solving a multiobjective optimization problem aims at detecting the efficient set,
namely the set of points in the decision space that leads to nondominated points in the
criterion space. A point of the image set is nondominated if none of its components can
be decreased without increasing any other component. A formal definition will be given
in Section 2.

It is well known that mixed integer nonlinear optimization is NP-hard and its solution
typically requires dealing with enormous search trees [2]. Handling more than one objective
function adds an additional difficulty: assume there is only one binary variable, I = {1}
with x1 ∈ {0, 1}, and we have just one objective function, i. e., m = 1. Then for solving
(MOMIC) only two convex optimization problems have to be addressed, one with x1 fixed
to 0 and one with x1 fixed to 1. Clearly, the smallest minimal value is the optimal value of
the original problem. In case of two or more objective functions already this simple setting
is much more challenging. Solving the problems with fixed values for x1 would mean to
determine the whole efficient set of a multiobjective convex optimization problem, which
is in general infinite. Then, after computing two sets of nondominated points one has
to compare them and to determine the “smallest” values, see Figure 1 on page 5 for an
illustration of this observation for four choices of the integer variables.

So far, most of the existing algorithms for multiobjective mixed integer optimization
are only for linear programming problems. Those can be divided into two main classes:
decision space search algorithms, i.e., approaches that work in the space of feasible points,
and criterion space search algorithms, i.e., methods that work in the space of objective
function values.

Among the decision space search algorithms, the method proposed by Mavrotas and
Diakoulaki, [28], is the first branch-and-bound algorithm for solving multiobjective mixed
binary programs. The authors improved and extended their work in [29]. Other works
defining branch-and-bound algorithms for multiobjective integer linear programming prob-
lems are [16, 37]. Branch-and-bound algorithms for biobjective mixed integer linear opti-
mization problems are proposed in [1, 36].

2

Criterion space search algorithms find nondominated points by addressing a sequence
of single-objective optimization problems. Once a nondominated point is computed, dom-
inated parts of the criterion space are removed and the algorithms continue the search for
new nondominated points. Several contributions in the context of criterion space search
algorithms for biobjective and triobjective integer linear programming are given by Boland
and co-authors [3, 4, 5, 6]. For criterion space search algorithms for biobjective mixed in-
teger linear problems see, for instance, [8, 9, 33, 38], for biobjective mixed binary linear
problems, see [19], and for three objective functions, see [34].

As far as we know, the first general purpose method to tackle multiobjective mixed
integer convex programs is the heuristic approach based on a branch-and-bound algorithm
proposed by Cacchiani and D’Ambrosio in [14].

A classical technique to solve a multiobjective optimization problem is to convert the
problem into a parameter-dependent single-objective one, known as scalarization. The
scalarized problems are then parameter-dependent single-objective mixed integer convex
optimization problems. By following this approach, many of these single-objective prob-
lems have to be solved, one for each choice of the parameter’s value. It is a challenge to
choose the parameter’s values in a smart way, especially for m ≥ 3, as the set of non-
dominated points is in general disconnected and can have huge gaps. Burachik et al. [11]
recently proposed an algorithm that considers scalarized problems for multiobjective in-
teger and mixed-integer optimization. It is based on the use of a clever grid generation
technique for the parameters based on [12, 13]. Moreover, to speed up the algorithm, the
optimal solution obtained at a neighboring grid point can be used as a good starting point.
However, any other information regarding the branching and discarding within one run of
the single-objective mixed integer sub-solver is not re-used. Thus, valuable information
about promising subboxes, either for discarding or for good upper bounds, is lost.

We propose in this paper for the first time a non-scalarization based deterministic algo-
rithm for multiobjective mixed integer convex problems which is not using a scalarization
of the original problem. We directly develop a branch-and-bound algorithm based on a
partitioning of the feasible region, i.e., a decision space algorithm. We present two ver-
sions of the algorithm. In one version we do not have to solve any single-objective mixed
integer subproblem but only single-objective convex subproblems. In the second version
we need to address also single-objective mixed integer convex optimization problems. No
parameter needs to be chosen to define the subproblems we consider.

To compute lower bounds in our branch-and-bound approach, we rely on linear outer
approximations of the image set. We use outer approximation techniques from convex
multiobjective optimization for finding lower bounds of the continuous relaxation of the
problem (i. e., the problem obtained by ignoring the integrality constraints), as well as for
constructing outer approximations of the convex hull of the true image set over subboxes.
First promising tests on bounds by continuous relaxations are reported in the master
thesis of the fourth author [35]. We keep track of upper bounds in the image space and
derive by that a discarding test for the branch-and-bound procedure. This results in a
deterministic solver for which we can give theoretical guarantees to find approximations of
the set of efficient and of the set of nondominated points. The algorithm is related to the
one proposed in the context of multiobjective continuous nonconvex optimization [30] by
the second and the third authors of this paper. Both algorithms are in fact branch-and-

3

bound methods and are based on similar criteria to explore the feasible region and prune
the nodes in the branching tree. The difference is that now the relaxations are obtained
by ignoring the integrality assumptions — and that the bounds obtained thereby are
improved by considering the convex hull of the true image sets.

The paper is organized as follows. In Section 2 we report notations and definitions
that will be used throughout the paper. In Section 3 we present our branch-and-bound
algorithm MOMIX. Details on how to define a “light” version of the algorithm that does not
need to address any single-objective mixed integer convex programming problem are given
as well. Theoretical insights of MOMIX and MOMIXlight are also given in Section 3. Some
numerical results are reported in Section 4. Section 5 concludes the paper.

2 Definitions and Notations

Throughout the paper, we indicate with ‖ · ‖ the Euclidean norm. Given a box B = [l, u],
we denote by ω(B) its width obtained as the Euclidean distance between l and u, namely
ω(B) = ‖u − l‖. Given two vectors x, y ∈ Rn, we write x ≤ y and x < y if xi ≤ yi and
xi < yi for all i ∈ {1, . . . , n}, respectively. We write x � y when an index i ∈ {1, . . . , n}
exists such that xi > yi. Given a vector x ∈ Rn and an index set I ⊆ {1, . . . , n}, we denote
with xI the subvector with components xi, i ∈ I.

Let x ∈ R, we define

bxc := max{c ∈ Z | c ≤ x}
dxe := min{c ∈ Z | x ≤ c}

and [x] :=

{
dxe if x+ 0.5 ≥ dxe
bxc otherwise.

For x ∈ Rn, we define bxc, dxe and [x] componentwise.
For a nonempty set A ⊂ Rm, we denote by conv(A) the convex hull of A, namely the

smallest convex set that contains A. The set int(A) describes the interior of the set A. By
Bg, BZ and Bg,Z we denote the following sets related to the constraints in (MOMIC):

Bg := {x ∈ B | g(x) ≤ 0},
BZ := {x ∈ B | xi ∈ Z for all i ∈ I},
Bg,Z := Bg ∩BZ.

(1)

Using these sets, we can write (MOMIC) in short form as

min f(x)

s.t. x ∈ Bg,Z.

As mentioned, we are going to define a branch-and-bound method based on partitioning
the feasible set of (MOMIC). Our branching rule is based on bisections of the box B. Let
B̃ be a subbox of B. By B̃g, B̃Z and B̃g,Z we denote the sets defined according to (1),
where the set B is replaced by B̃ (i.e., x ∈ B̃ in all the set definitions).

We recall here the basic concepts of efficient and nondominated points (see [25] for
further details).

Definition 2.1

4

z∗ − Rm+
z∗

F1

F2

F3

F4

z′ − Rm+
z′

f1

f2

Figure 1: Image set of a biobjective
instance of (MOMIC).

z − Rm+

z
f(B̃g,Z)

LB̃

f1

f2

Figure 2: Image set of a biobjective
purely integer instance of (MOMIC).

(a) A feasible point x∗ ∈ Bg,Z is efficient for (MOMIC) if there is no x ∈ Bg,Z with
f(x) ≤ f(x∗) and f(x) 6= f(x∗). The set of efficient points for (MOMIC) is the
efficient set of (MOMIC).

(b) A point z∗ = f(x∗) is nondominated for (MOMIC) if x∗ ∈ Bg,Z is an efficient point
for (MOMIC). The set of all nondominated points of (MOMIC) is the nondominated
set of (MOMIC).

(c) Let x, x∗ ∈ Bg,Z with f(x) ≤ f(x∗) and f(x) 6= f(x∗). Then we say that x dominates
x∗ and also that f(x) dominates f(x∗).

In Figure 1, we plot the image set of a biobjective mixed integer convex optimization
problem. Here, we assume that {xI | x ∈ Bg,Z} =: {y1, y2, y3, y4} and we show the sets
Fj := {f(x) | x ∈ Bg,Z, xI = yj}, j = 1, . . . , 4. Then the union of all Fj describes
the whole image set, i. e.,

⋃
j=1,...,4 Fj = {f(x) | x ∈ Bg,Z}. The point z∗ ∈ f(Bg,Z) is

nondominated and the preimage of z∗ is an efficient point. On the other hand, z′ ∈ f(Bg,Z)
is dominated because z∗ ≤ z′ and z∗ 6= z′. In fact, all the points z ∈ F3 are dominated,
as points w ∈ f(Bg,Z) exist such that w < z. The nondominated set of the problem is
visualized as the thick boundary of the image set. The efficient set is made of all preimages
of the nondominated set. Figure 1 shows that the nondominated set of a multiobjective
mixed integer nonlinear programming problem is in general a disconnected set. From an
algorithmic point of view, this makes the detection of the efficient set of (MOMIC) an
extremely challenging problem. Furthermore, there is the necessity of comparing sets of
points: this is a crucial difference with respect to single-objective mixed integer nonlinear
optimization.

5

3 MOMIX: An Outer Approximation based Branch-and-

Bound Algorithm for (MOMIC)

The algorithm we propose is a branch-and-bound method that looks for the efficient
set of (MOMIC) by partitioning the box B. At every node of the branch-and-bound
tree, a subbox B̃ ⊆ B is selected and lower and upper bounds on the nondominated set
of (MOMIC) are derived. When considering the subbox B̃, a lower bound is any set
LB̃ ⊆ Rm such that LB̃ +Rm+ contains the image of feasible points B̃g,Z through f , namely

f(B̃g,Z) ⊆ LB̃ + Rm+ . In Figure 2, we illustrate the set f(B̃g,Z) and a lower bound LB̃ for
a biobjective purely integer programming problem: note that the image of feasible points
in B̃ through f is a set of isolated points in Rm.

In our algorithm we derive lower bounds by building linear outer approximations of
conv(f(B̃g,Z)). As f(B̃g,Z) ⊆ conv(f(B̃g,Z)) holds, linear outer approximations of the
convex hull of f(B̃g,Z) are valid lower bounds on B̃. Details on how we compute the
hyperplanes to outer approximate conv(f(B̃g,Z)) will be given in Section 3.2.

Upper bounds are computed by evaluating the objective functions at feasible points.
As soon as an upper bound z exists such that LB̃ + Rm+ ⊆ {z}+ Rm+ \{0} we can discard

the subbox B̃. Or, in other words, we can avoid to go on partitioning B̃, as we have an
evidence that it cannot contain any efficient point for (MOMIC). Our discarding procedure
is in fact using a list of upper bounds and it will be detailed in Section 3.1 and Section 3.2.

In Figure 2, the point z ∈ f(B̃g,Z) is an upper bound for the nondominated set of the
problem, as it is the image of a feasible point. All the points that belong to Rm \ ({z}+
Rm+ \ {0}) are candidates to belong to the nondominated set (note that it is not enough
to consider {z} − Rm+).

Let δ > 0 be a positive scalar, which is the input parameter of our branch-and-bound
method. As the output of our algorithm, we will have a list of subboxes B̃ with ω(B̃) < δ,
containing the set of all efficient points, and a list of upper bounds approximating the
nondominated set.

Algorithm 1 is a basic scheme of our branch-and-bound procedure: LW denotes the
working list and contains boxes that still have to be examined. The list LS denotes the
list of boxes that fulfill the termination criteria, i.e., those subboxes B̃ that were not
discarded and satisfy ω(B̃) < δ. In Section 3.3 we will prove that LS represents a cover of
the efficient set E, namely E ⊆

⋃
B̃∈LS B̃. The list LPNS denotes a set of upper bounds

and it will be defined in Section 3.1. Note that the flag D is used in order to decide if a box
should be discarded, and it is an output of Algorithm 2. As a final step in Algorithm 1 we
filter the list LS by a postprocessing phase. Further details will be given in Section 3.2.

3.1 Computation of upper bounds and local upper bounds

In order to compute upper bounds of the nondominated set of (MOMIC), we evaluate the
objective functions at feasible points x ∈ Bg,Z. It is well known that determining feasible
points of a mixed integer set is an NP-hard problem. In the literature, several heuristic
methods have been proposed. The most popular one is the Feasibility Pump [20] and some
of its enhancements, among them [7, 10, 15, 21]. Within our algorithm, we either detect

6

Algorithm 1 MOMIX: a (MOMIC) Solver

INPUT: (MOMIC), δ > 0
OUTPUT: LS , LPNS

1: LS ← ∅ LW ← {B} LPNS ← ∅
2: while LW 6= ∅ do
3: Select a box B̃ of LW and update LW := LW \ B̃
4: Bisect B̃ into subboxes B̃1 and B̃2

5: for k = 1, 2 do
6: Apply Algorithm 2 to B̃k and obtain D and an updated LPNS
7: if D = true then
8: Discard B̃k

9: else
10: if ω(B̃k) < δ then
11: Add B̃k to LS
12: else
13: Add B̃k to LW .
14: end if
15: end if
16: end for
17: end while
18: Postprocessing(LS ,LPNS)

feasible points by addressing specific single-objective mixed integer convex programming
problems (see Section 3.2) or we try to build feasible points simply by rounding the integer
components of points x ∈ B̃, which are generated in our discarding test. Let round(x) be
the point defined as

(round(x))i =

{
[xi] i ∈ I
xi otherwise,

for each i ∈ {1, . . . , n}.

If round(x) ∈ Bg,Z holds, f(round(x)) is a valid upper bound.
Upper bounds are needed in order to discard boxes or, in other words, to prune nodes

in the branch-and-bound tree. In order to do that we need to introduce two finite sets of
points, namely the list of potentially nondominated solutions LPNS ⊆ f(Bg,Z) and the list
of local upper bounds LLUB ⊆ Rm.

In our algorithm the list of potentially nondominated solutions LPNS is initialized as
the empty set. Then, every time an upper bound z ∈ f(Bg,Z) is computed, we check
whether it is dominated by any point in LPNS. If this is the case, z is not added to LPNS.
Otherwise, we update the list by adding z to LPNS and by removing all the upper bounds
dominated by z from LPNS. By doing this, we ensure that LPNS is a stable set of points:
a set N ⊆ Rm is said to be stable if there are no x, y ∈ N with x ≤ y and x 6= y.

For the list of local upper bounds LLUB we need the following definition:

Definition 3.1 [26] Let N ⊆ f(B) be a finite and stable set of points and Z ⊆ Rm be a
box such that f(B) ⊆ int(Z).

7

(a) The search region related to N and Z is defined as

S := {w ∈ int(Z) | z � w for all z ∈ N}.

(b) The search zone for some p ∈ Rm related to Z is defined as

C(p) = {w ∈ int(Z) | w < p}.

(c) A list L ⊆ Z is called a local upper bound set with respect to N , if

(i) S =
⋃
p∈LC(p)

(ii) C(p) is not a subset of C(p̃) for all p, p̃ ∈ L.

Let Z ⊆ Rm be a box such that f(B) ⊆ int(Z). In our algorithm we initialize the
local upper bound set LLUB with the point p0 ∈ Rm defined as p0j := maxw∈Z wj. Then
we build and keep updated LLUB with respect to the finite and stable set LPNS according
to the procedure proposed in [26]. For an illustration of the local upper bound set LLUB
with respect to LPNS, see Figure 3 on page 9.

Remark 3.2 Along the iterations of our algorithm, let L′PNS and LPNS be two consecutive
lists of potentially nondominated points, i. e., L′PNS is the set of potentially nondominated
solutions during an earlier iteration than LPNS, which evolved from L′PNS along the al-
gorithm. Let L′LUB and LLUB be the related local upper bound sets. Then, based on the
update procedure mentioned above, we have that to any (former) z′ ∈ L′PNS there exists (a
current) z ∈ LPNS with z ≤ z′. Hence, the search regions S ′ and S related to L′PNS and
LPNS are such that S ⊆ S ′, i.e.,

S =
⋃

p∈LLUB

C(p) ⊆
⋃

p∈L′LUB

C(p) = S ′.

Furthermore, for every (current) p ∈ LLUB there exists a (former) local upper bound
p′ ∈ L′LUB such that p ≤ p′. This can be seen by induction considering the updating
procedure proposed in [26].

Note that p ∈ LLUB is not necessarily the image of a feasible point. Local upper
bounds are used in order to decide if a subbox B̃ ⊆ B should be discarded as clarified by
the following results.

Lemma 3.3 [30] Let LLUB be a local upper bound set with respect to the finite and stable
set LPNS ⊆ f(Bg,Z). For every z ∈ LPNS and for every j ∈ {1, ...,m} there is a p ∈ LLUB
with zj = pj and zr < pr for all r ∈ {1, ...,m} \ {j}.

Based on this lemma we can prove our main result for the pruning of nodes:

Theorem 3.4 Consider a subbox B̃ ⊆ B. Let LPNS ⊆ f(Bg,Z) be a finite and stable set.
Let LLUB be the local upper bound set w.r.t. LPNS. If

p /∈ f(B̃g,Z) + Rm+ holds for all p ∈ LLUB, (2)

B̃ does not contain any efficient point for (MOMIC).

8

Z
f1

f2

LPNS
LLUB

f(B̃g)

Figure 3: Illustration of Corollary 3.5 for m = 2. In the picture we plot the local upper
bound set LLUB with respect to the set of potentially nondominated solutions LPNS. Note
that the box B̃ would be discarded, as the assumptions of Corollary 3.5 (a) are satisfied
and B̃ cannot contain any efficient point for (MOMIC).

Proof. Assume by contradiction that an efficient point x∗ ∈ B̃g,Z for (MOMIC) exists.
From (2), we have

f(x∗) � p for all p ∈ LLUB. (3)

Since LLUB is a local upper bound set w.r.t. LPNS, it follows from (3) and Definition 3.1
(b) and (c), that f(x∗) does not belong to the search region S. Hence, there exists a point
z ∈ LPNS with z ≤ f(x∗). As z ∈ LPNS, a point x′ ∈ Bg,Z exists such that z = f(x′).
Since x∗ is efficient for (MOMIC), it follows z = f(x′) = f(x∗). Lemma 3.3 implies that
there is a point p′ ∈ LLUB with f(x∗) ≤ p′, which is a contradiction to (3) and the theorem
is proved.

From Theorem 3.4, since B̃g,Z ⊆ B̃g and f(B̃g,Z) ⊆ conv(f(B̃g,Z)) hold, we obtain the
following corollary.

Corollary 3.5 Let B̃ be a subbox of B. Let LPNS ⊆ f(Bg,Z) be a finite and stable set and
let LLUB be the local upper bound set w.r.t. LPNS.

(a) If
p /∈ f(B̃g) + Rm+ holds for all p ∈ LLUB,

B̃ does not contain any efficient point for (MOMIC).

(b) If
p /∈ conv(f(B̃g,Z)) + Rm+ holds for all p ∈ LLUB,

B̃ does not contain any efficient point for (MOMIC).

An illustration of Corollary 3.5 (a) can be found in Figure 3.
The following remark clarifies how the assumptions of Corollary 3.5 are related. Fur-

thermore, it gives the basis of the hierarchy of lower bounds in our bounding procedure.

Remark 3.6 Note that due to the convexity of the objective functions fj, j = 1, . . . ,m
and of B̃g the following holds

conv(f(B̃g,Z)) + Rm+ ⊆ f(B̃g) + Rm+ .

9

3.2 Determining lower bounds and pruning nodes

The theoretical results introduced in the previous section, namely Corollary 3.5, give the
basis of the discarding procedure in our branch-and-bound algorithm: For every subbox
B̃ we want to check whether p 6∈ LB̃ + Rm+ holds for all p ∈ LLUB, being LB̃ a valid lower

bound for B̃g,Z.
As f(B̃g) is a valid lower bound, a straightforward way to verify if a box should be

discarded would be to check whether a local upper bound p ∈ LLUB belongs to this
lower bound given by the convex relaxation. This would mean to check whether p ∈
f(B̃g) + Rm+ holds. This can be done by addressing a simple single-objective continuous
convex problem.

From a computational point of view, this means that we would need to solve |LLUB|
single-objective continuous convex problems, at every node of the branching tree.

In our algorithm, in order to reduce this numerical effort, we check instead whether a
local upper bound belongs to a linear outer approximation of f(B̃g)+Rm+ , i.e., we only need
to check whether a local upper bound satisfies linear inequalities. Furthermore, our linear
outer approximations are built in a smart way: the supporting hyperplanes computation
is adaptively driven by some “meaningful” local upper bounds p ∈ LLUB.

Additionally, if we want to improve our lower bound, we compute further hyperplanes
to outer approximate conv(f(B̃g,Z)) +Rm+ . Again this computation is done in an adaptive
way, and the supporting hyperplanes computation is steered by some specific local upper
bounds p ∈ LLUB.

In the following, we give details on how the supporting hyperplanes are computed and
how the discarding procedure works.

At an arbitrary node of our branching tree we select a subbox B̃ ⊆ B. In order to com-
pute valid lower bounds on B̃ we build linear outer approximations LB̃ of conv(f(B̃g,Z)),
such that

f(B̃g,Z) ⊆ conv(f(B̃g,Z)) ⊆ LB̃ + Rm+ .

In order to discard the subbox B̃ and prune the current node, we check whether

p 6∈ LB̃ + Rm holds for all p ∈ LLUB.

Then, from Corollary 3.5 B̃ does not contain any efficient point for (MOMIC) and the
current node can be pruned. As we will deal with linear outer approximations of sets,
recall here the definition of supporting hyperplane of a set:

Definition 3.7 Let P ⊂ Rm be a nonempty set, let λ ∈ Rm \ {0} and z ∈ ∂P , where ∂P
is the boundary of the set P . The hyperplane

Hλ,z := {y ∈ Rm | λTy = λT z}

is called supporting hyperplane (of P), if λTy ≥ λT z holds for all y ∈ P .

As mentioned in the introduction, we propose two versions of our branch-and-bound
algorithm. The difference lies in the lower bounds computation. The first version of
our algorithm, named MOMIXlight, computes valid lower bounds by addressing only single-
objective continuous convex optimization problems. The second version, named MOMIX,

10

tries to define stronger lower bounds by dealing also with single-objective mixed integer
convex programming problems. In our algorithm we use a flag light to distinguish between
the two versions of the method.

Both, MOMIXlight and MOMIX, start by computing linear outer approximations of the
convex set f(B̃g)+Rm+ by solving a family of single-objective continuous convex optimiza-

tion problems. As conv(f(B̃g,Z)) +Rm+ ⊆ f(B̃g) +Rm+ holds by Remark 3.6, we have that

linear outer approximations of f(B̃g) + Rm+ are valid lower bounds for conv(f(B̃g,Z)) as

well (see Figure 4 on page 13). If the linear outer approximation of f(B̃g) + Rm+ does

not allow to discard the box B̃, MOMIX tries to improve it by addressing properly defined
single-objective mixed integer convex programming problems.

As a first step for the outer approximation, we compute the ideal point f id ∈ Rm of
f(B̃g), namely the point whose j-th component is the minimum of fj on B̃g:

f idj := min
x∈B̃g

fj(x) j = 1, . . . ,m. (4)

We denote by xj,id ∈ B̃g a minimal solution in (4). Let ej be the j-th unit vector, then
Hej ,f id is a supporting hyperplane of f(B̃g). As a first linear outer approximation of f(B̃g)
or, in other words, as a first lower bound for f(B̃g,Z) we consider

LB̃ := ∂

(⋂
j∈{1,...,m}

(Hej ,f id + Rm+)

)
= {f id}+ ∂(Rm+). (5)

Note that building LB̃ requires to solve m single-objective continuous convex optimization
problems for the computation of f id.

Once LB̃ is computed we enter in a loop. For every p ∈ LLUB we check whether
p ∈ LB̃ + Rm+ holds. If this is the case, we try to improve the current linear outer
approximation LB̃ by computing a further hyperplane, based on p ∈ LLUB. This is done
by addressing the following single-objective continuous convex programming problem (see
also [17, 27])

min t

s.t. f(x) ≤ p+ te

x ∈ B̃g

t ∈ R,

(Pp(B̃
g))

where e = (1, . . . , 1)T ∈ Rm.
Note that Problem (Pp(B̃

g)) needs to be addressed only in case of p ∈ LB̃+Rm+ . In other

words, in our lower bound computation, we do not necessarily address Problem (Pp(B̃
g))

for all p ∈ LLUB, as it would be the case if we would rely only on the convex relaxation
f(B̃g).

Under regularity assumptions, we have that any minimal solution (x̂, t̂) ∈ B̃g × R of
Problem (Pp(B̃

g)) admits Lagrange multipliers. We refer to [17, 30] in case no Lagrange

multiplier exists. Let (x̂, t̂) ∈ B̃g × R be a minimal solution of (Pp(B̃
g)) and let λ̂ ∈ Rm+

be a Lagrange multiplier for the constraint f(x) ≤ p + te. Then, the hyperplane H λ̂,ŷ(p)

with ŷ(p) := p+ t̂e is a supporting hyperplane of f(B̃g), cf. [27, 31, 30].
There exist two possibilities:

11

(i) If t̂ > 0 holds, then p /∈ f(B̃g)+Rm+ , we improve the outer approximation by H λ̂,ŷ(p),
and consider the next local upper bound;

(ii) if t̂ ≤ 0 holds, then p ∈ f(B̃g) + Rm+ and the assumption of Corollary 3.5 (a) is not
satisfied.

If case (ii) occurs, so far we cannot discard B̃ based on Corollary 3.5 (a) as it may
contain efficient points for (MOMIC). Then, in case we apply MOMIX, i.e., light = 0, we
try to apply Corollary 3.5 (b) and thus we try to improve our linear outer approximation
by addressing a single-objective mixed integer convex programming problem. Let λ̂ ∈ Rm
be a Lagrange multiplier for the constraint f(x) ≤ p+ te for the solution of (Pp(B̃

g)). We
define the following problem

min λ̂Tf(x)

s.t. x ∈ B̃g,Z.
(MICPp(λ̂, B̃))

Let x̂ ∈ B̃g,Z be a minimal solution of (MICPp(λ̂, B̃)). Then the hyperplane H λ̂,f(x̂) is a

supporting hyperplane of conv(f(B̃g,Z)) and conv(f(B̃g,Z)) + Rm+ ⊆ H λ̂,f(x̂) + Rm+ holds.
Furthermore, f(x̂) is a valid upper bound for (MOMIC). Note that in case we are at a
node where all integer variables are fixed we do not need to perform this step, because
B̃gZ = B̃g holds.

Again two situations occur:

(i) If λ̂Tp < λ̂Tf(x̂) holds, we improve the outer approximation by H λ̂,f(x̂) and consider
the next local upper bound

(ii) If λ̂Tp ≥ λ̂Tf(x̂) holds, the local upper bound p lies above the hyperplane H λ̂,f(x̂).

If we are in case (ii), we do not continue with improving the linear outer approximation
and we branch the current node by bisecting B̃ in a later iteration.

Let H be the final linear outer approximation of f(B̃g,Z) containing all computed
supporting hyperplanes. Then the lower bound LB̃ is represented by

LB̃ := ∂

(⋂
H∈H

(H + Rm+)

)
.

Algorithm 2 is reporting our lower bound computation in detail.
As soon as feasible points of B̃g,Z are found, both LPNS and LLUB are updated. This

is the reason why in Algorithm 2 we make use of the list L∗LUB which does not change
along the discarding test: We need a fixed set of local upper bounds in order to ensure
the termination of the loop starting in line 10.

Note that in line 17 we update the linear outer approximation even if the subbox B̃ is
further kept either in the working list LW or in the solution list LS . This is done in order
to perform the postprocessing phase in Algorithm 1: Let B̃ ∈ LS and let H be the linear
outer approximation of f(B̃g,Z) built by Algorithm 2. This subbox B̃ is removed from LS
if for all local upper bounds p belonging to the final list LLUB we have that a hyperplane
Hλ,z′ ∈ H exists such that λTp ≥ λT z′ holds.

12

p

f id

f(x̂)

H λ̂,ŷ(p)

H λ̂,f(x̂)

f(B̃g)

conv(f(B̃g,Z))

Figure 4: Illustration of our lower bounding procedure on a biobjective purely integer
convex programming instance.

Example 3.8 In Figure 4 on page 13 we illustrate our lower bounding procedure on a
biobjective purely integer convex programming instance. Note that in this case the image
of feasible points is a set of isolated points in R2. The first outer approximation considered
is based on the ideal point f id. Then, considering the local upper bound p ∈ LLUB, the
supporting hyperplane H λ̂,ŷ(p) for f(B̃g) is built by solving Problem (Pp(B̃

g)) and added to
the linear outer approximation. Finally, in case MOMIX (and not MOMIXlight) is applied, the

linear outer approximation is further refined by considering H λ̂,f(x̂), being x̂ a solution of
(MICPp(λ̂, B̃)).

In the following lemma, we prove the exactness of our lower bounding procedure:
we show that Algorithm 2 returns D = false in case B̃ contains an efficient point
for (MOMIC). Thus it will be further partitioned.

Lemma 3.9 Let B̃ be a subbox of B that contains an efficient point x∗ ∈ B̃g,Z of (MOMIC).
Then Algorithm 2 returns D = false.

Proof. We distinguish two cases for which Algorithm 2 returns D = true: either D = true

because (MICPp(λ̂, B̃)) is infeasible for any p ∈ L∗LUB or because lines 18 or 28 are never
reached for any p ∈ L∗LUB. The first case cannot occur as x∗ ∈ B̃g,Z. The second case may
occur if for all p ∈ L∗LUB either the condition in line 11 or the condition in line 16 or the
condition in line 27 is not satisfied. In all three cases we get that p /∈ f(B̃g) + Rm+ holds

for all p ∈ L∗LUB. Corollary 3.5 then implies that B̃ does not contain any efficient point
for (MOMIC).

3.3 Correctness of MOMIX

We already mentioned that our algorithm stops as soon as the working list LW is empty
and we get a list of subboxes B̃ of width less than a prescribed value δ > 0, i.e., ω(B̃) < δ.

13

Algorithm 2 Lower bounding procedure

INPUT: (MOMIC), a subbox B̃ ⊆ B, LPNS, LLUB, light ∈ {0, 1}
OUTPUT: LPNS, LLUB, D, where D = true means “Discard B̃”

1: Set D ← true

2: for j ∈ {1, . . . ,m} do
3: Compute f idj and obtain xj,id ∈ B̃g

4: if round(xj,id) ∈ Bg,Z then
5: Update LPNS by f(round(xj,id)) and update LLUB
6: end if
7: end for
8: Set L∗LUB ← LLUB
9: Set H ← {Hej ,f id | j ∈ {1, ...,m}}

10: for p ∈ L∗LUB do
11: if λTp ≥ λT z′ for all Hλ,z′ ∈ H then
12: Solve (Pp(B̃

g)) and get (x∗, t∗) ∈ B̃g × R, λ̂ ∈ Rm Lagrange multiplier for
the constraint f(x) ≤ p+ te

13: if round(x∗) ∈ Bg,Z then
14: Update LPNS by f(round(x∗)) and update LLUB
15: end if
16: if t∗ ≤ 0 and light = 1 then
17: Set H ← H∪ {H λ̂,p+t∗e}
18: Set D ← false and break for-loop
19: else if t∗ ≤ 0 and light = 0 then
20: Solve Problem (MICPp(λ̂, B̃))

21: if (MICPp(λ̂, B̃)) is infeasible then
22: Set D ← true and break for-loop
23: else
24: Let x̂ ∈ B̃g,Z be a solution of Problem (MICPp(λ̂, B̃))
25: Update LPNS by f(x̂) and update LLUB
26: Set H ← H∪ {H λ̂,f(x̂)}
27: if λ̂Tp ≥ λ̂Tf(x̂) then
28: Set D ← false and break for-loop
29: end if
30: end if
31: else
32: Set H ← H∪ {H λ̂,p+t∗e}.
33: end if
34: end if
35: end for

14

In this section, we show the exactness of Algorithm 1, namely we prove that it returns the
set LS which is a cover of the efficient set E of (MOMIC). In order to do that, we need
to make the following assumption related to the branching rule adopted.

Assumption 3.10 Let B̃ ⊆ B. Let the branching rule in Algorithm 1 be such that

B̃g,Z ⊆ B̃1 ∪ B̃2

holds for the subboxes B̃1 and B̃2 derived from B̃, and that the algorithm performs a finite
number of branching steps before stopping.

Note that Assumption 3.10 implies that the set of efficient points for (MOMIC) be-
longing to B̃ is a subset of B̃1 ∪ B̃2. In Section 4 we propose and compare two branching
rules which both satisfy Assumption 3.10.

From Assumption 3.10 and Lemma 3.9 we directly get the following

Theorem 3.11 Let E be the efficient set of (MOMIC). Let LS be the output of Algo-
rithm 1. Then LS is a cover of E, namely E ⊆

⋃
B̃∈LS B̃.

We underline that when MOMIX (and not MOMIXlight) is applied, the list LS is built in
a way such that every subbox B̃ belonging to LS admits at least one feasible point, i.e.,
B̃g,Z 6= ∅. Note that a feasible point x̂ ∈ B̃g,Z is computed in line 24 in Algorithm 2.

We further prove that the points in the final list of potentially nondominated solutions
LPNS are images of some points in the cover of the efficient set of (MOMIC).

Proposition 3.12 Let LPNS and LS be the output of Algorithm 1. Then, for every
z ∈ LPNS there exists a subbox B̃ ∈ LS such that z ∈ f(B̃g,Z).

Proof. Assume by contradiction that the preimage x of z ∈ LPNS belongs to a discarded
subbox B̃. We recall that the subbox B̃ is discarded if no local upper bound belongs to
LB̃ + Rm+ , as this implies that B̃ does not contain any efficient point for (MOMIC) (see
Corollary 3.5).

This means that at a certain node of our branching tree, a lower bound LB̃ was com-
puted such that for all p ∈ L′LUB

p /∈ LB̃ + Rm+
holds, where L′LUB is the list of local upper bounds at that node. Hence,

p 6∈ f(B̃g,Z) + Rm+ for all p ∈ L′LUB. (6)

Let LLUB be the final list of local upper bounds related to LPNS. By Lemma 3.3 a local
upper bound p̂ ∈ LLUB exists such that z ≤ p̂ holds, i.e., p̂ ∈ f(B̃g,Z) + Rm+ . If p̂ ∈ L′LUB
we directly get a contradiction to (6). Otherwise, from Remark 3.2, it follows that a local
upper bound p̄ ∈ L′LUB exists such that p̂ ≤ p̄ holds. Hence, p̄ ∈ f(B̃g,Z) + Rm+ which
contradicts (6).

We now show that, in case MOMIX is applied, LPNS is a “good” approximation of the
nondominated set. This means that the distance of the image of efficient points from
LPNS is bounded by a quantity that depends on δ > 0, which is the input parameter of
Algorithm 1. For this we exploit the Lipschitz continuity of the objective functions fj,
j = 1, . . . ,m, which holds as the functions are continuously differentiable and the feasible
sets are compact. Let Lj ≥ 0 be the Lipschitz constant for function fj, j = 1, . . . ,m.

15

Theorem 3.13 Let δ > 0 be the input parameter and LPNS, LS be the output of Algo-
rithm 1 where MOMIX is applied, i.e., light = 0. Let LLUB be the local upper bound set with
respect to LPNS and E ⊆ Bg,Z be the efficient set of (MOMIC). Set L = maxj=1,...,m Lj.
Then

f(E) ⊆

(⋃
p∈LLUB

({p} − Rm+)

)⋂(⋃
z∈LPNS

({z − Lδe}+ Rm+)

)
holds, where e = (1, . . . , 1)T ∈ Rm.

Proof. Let x ∈ E. In order to prove that f(x) ∈
⋃
p∈LLUB

({p} − Rm+) we distinguish
two cases. Assume first that f(x) belongs to the search region S related to LPNS (see
Definition 3.1). Then, a local upper bound p ∈ LLUB exists such that f(x) belongs to the
search zone C(p) related to p. It follows that f(x) < p. On the other hand, if f(x) /∈ S,
by Definition 3.1 a point z ∈ LPNS exists such that z ≤ f(x). Since f(x) is nondominated
and z ∈ LPNS is the image of a feasible point, we necessarily have f(x) = z. From
Lemma 3.3, a p ∈ LLUB exists such that f(x) = z ≤ p holds.

Next, we prove f(x) ∈
⋃
z∈LPNS

({z − Lδe} + Rm+): For this, we choose a box B̃ ∈ LS
with x ∈ B̃g,Z which exists by Theorem 3.11. From Algorithm 2, if light = 0, a feasible
point x̂ ∈ B̃g,Z is computed for B̃ (see line 24). The point f(x̂) is an upper bound
for (MOMIC) and then a candidate to belong to LPNS. Then, either f(x̂) is an element of
LPNS or z ∈ LPNS exists such that z ≤ f(x̂). Since ω(B̃) < δ holds, we have ‖x− x̂‖ < δ
and, by Lipschitz continuity of fj we obtain for all j = 1, . . . ,m: |fj(x)− fj(x̂)| ≤ Ljδ ≤
Lδ, j = 1, . . . ,m. Therefore, since Lδ ≥ 0, we have that fj(x) ≥ fj(x̂)−Lδ ≥ zj −Lδ for
all j = 1, . . . ,m and the theorem is proved.

An illustration of Theorem 3.13 on an test instance solved by (MOMIC) is given in
Figure 11 in Section 4.

4 Numerical Results

In this section, we present our numerical experiments on different instances of (MOMIC).
In addition to some results on biobjective quadratic instances, we show results on an
instance with m = 3 and results on a mixed integer convex non-quadratic instance.

In our implementation of Algorithm 1, at line 3, in order to select a subbox B̃ ∈ LW ,
we consider the ideal point f id computed according to (4). We pick at first those subboxes
with the lexicographic smallest ideal point f id, with the idea that boxes with small f id

may lead to good upper bounds. Concerning the branching rule, we adopted two different
strategies detailed in Section 4.1.

For solving the single-objective convex problems used to compute f id and to define
the hyperplanes H λ̂,p+t̂e we applied fmincon, the solver from the optimization toolbox of
MATLAB. For all runs we set δ = 0.1 if it is not stated otherwise.

For the solution of the mixed integer convex programming problem used to define
the hyperplane H λ̂,f(x̂) that enriches the linear outer approximation of f(B̃g,Z) (line 20
of Algorithm 2) we can adopt any solver which is able to deal with convex MINLPs as
e.g. SCIP [22]. In our numerical experiments we mainly used quadratic instances and

16

within our implementation of MOMIX we adopted the mixed integer quadratic solver of
GUROBI [24].

Both versions of Algorithm 1, MOMIX and MOMIXlight have been implemented in MAT-
LAB R2018a. All experiments have been performed on a computer with Intel(R) Core(TM)
i5-7400T CPU and 16 Gbytes RAM on operating system Windows 10 Enterprise.

4.1 Branching rules

In our numerical experiments, we make use of two different branching rules. Both rules are
based on the idea of partitioning boxes considering first the largest edges, giving priority
to the integer variables in two different ways.

Let B̃ = [l̃, ũ] be a subbox of B. We consider the following two sets of indices in order
to identify the branching variable ı̂ ∈ {1, . . . , n}:

(br1) J1 = argmax{ũi − l̃i | i ∈ I}. If ũi − l̃i = 0 for all i ∈ I, i.e., in case all the integer
variables are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}. Choose ı̂ ∈ J1.

(br2) J2 = argmax{ũi− l̃i | i ∈ {1, ..., n}}. If J2∩I 6= ∅ holds, choose ı̂ ∈ J2∩I. Otherwise,
choose ı̂ ∈ J2.

The first strategy is standard in mixed integer procedures: the integer variables are
fixed at first. The second strategy aims to reduce the largest edge of the boxes, no matter
whether it is related to an integer variable or not. Only if there is more than one largest
edges and one of them belongs to an integer variable, we prefer to branch at this variable.
We will show that this second non-standard branching rule performs better on some of
the test instances.

Once the branching variable ı̂ ∈ {1, . . . , n} has been selected, we partition the box B̃
into two boxes B̃1, B̃2 as follows: We set for c1, c2 ∈ [l̃ı̂, ũı̂] :

B̃1 :=
[
l̃, (ũ1, ..., ũı̂−1, c1, ũı̂+1, ..., ũn)T

]
and B̃2 :=

[(
l̃1, ..., l̃ı̂−1, c2, l̃ı̂+1, ..., l̃n

)T
, ũ

]
.

Thereby, we differentiate between ı̂ ∈ I and ı̂ /∈ I. If ı̂ /∈ I, we set c1 = c2 = (l̃ı̂ + ũı̂)/2. If
ı̂ ∈ I, we set c1 = b(l̃ı̂ + ũı̂)/2c and c2 = d(l̃ı̂ + ũı̂)/2e. In case l̃ı̂ + ũı̂ is an even number, in
order to avoid B̃1 ∩ B̃2 6= ∅, we split considering c1 = (l̃ı̂ + ũı̂)/2 and c2 = 1 + (l̃ı̂ + ũı̂)/2.
Note that such a bisection excludes the infeasible part between c1 and c2.

As already mentioned in the introduction, we assume B = [l, u] ⊂ Rn with li, ui ∈ Z
for all i ∈ I. Then, for all subboxes B̃ obtained by any of the branching rules presented,
it holds l̃i, ũi ∈ Z for all i ∈ I. Furthermore, it is easy to see that both branching rules
adopted in MOMIX and MOMIXlight satisfy Assumption 3.10.

In order to clarify the differences between the two rules (br1) and (br2), we present
the results obtained by MOMIX when applied to the following:

17

Test instance 4.1 We study the biobjective mixed integer instance with two variables:

min

(
x1 + x2
x21 + x22

)
s.t. (x1 − 2)2 + (x2 − 2)2 ≤ 36

x1 ∈ [−2, 2]

x2 ∈ [−4, 4] ∩ Z.

(T1)

In Figure 6 and Figure 8, we show in gray the image of Bg,Z under the objective
functions. In black we give the set LPNS obtained by applying MOMIX with (br1) and
(br2), respectively. Note that MOMIX is able to find in both cases a good approximation of
the non-connected nondominated set of the instance. In Figure 5 and Figure 7, we report
the partition of the box B = [(−2,−4)T , (2, 4)T] obtained applying MOMIX with (br1) and
(br2), respectively.

Figure 5: Partition of the box B
obtained by applying MOMIX with (br1)

Figure 6: The set LPNS obtained
by applying MOMIX with (br1)

Both branching rules explore the whole feasible set of (T1). Even while they partition
the box B in different ways, the outputs of MOMIX are very similar, i.e., with (br1) and
(br2) the boxes in the solution list LS and the list of upper bounds LPNS are nearly the
same.

4.2 Results on scalable instances

In this section, we show results on three different test instances of (MOMIC), all scalable
in the number of variables. We apply MOMIX and MOMIXlight in combination with (br1)
and (br2) on all instances. We analyze the impact of the branching rules as well as the
difference between MOMIX and MOMIXlight. Recall that MOMIX uses stronger lower bounds
but these require to solve single-objective mixed integer convex programming problems.

18

Figure 7: Partition of the box B
obtained by applying MOMIX with (br2)

Figure 8: The set LPNS obtained
by applying MOMIX with (br2)

Test instance 4.2 This instance has quadratic objective functions. The number of integer
variables can be set to different values. Let the matrices Q1 and Q2 be defined as follows:

(Q1)i,j =

3 if i=j=1

4 if i=j=n

1 else

and (Q2)i,j =

2 if i=j=1 or i=j= n

4 if i=j and i 6∈{1, n}
1 else.

Then the optimization problem is stated by

min

(
xTQT

1Q1x+ (1, 2, . . . , 2, 1)x

xTQT
2Q2x+ (−1,−2, . . . ,−2, 5)x

)

s.t. xi ∈ [−5, 5], i ∈ {1, . . . , n}
I = {3, . . . , n}.

(T2)

Note that QT
1Q1 and QT

2Q2 are positive semidefinite and hence f1 and f2 are convex
functions.

Test instance 4.3 This instance is also scalable in the number of integer variables.

min

 x1

x2 +
n∑
i=3

10(xi − 0.4)2

s.t.

n∑
i=1

x2i ≤ 4

xi ∈ [−2, 2] for all i = 1, . . . , n

I = {3, . . . , n}

(T3)

Here, we can explicitly give the set of all efficient points by

E = {x ∈ Rn | x21 + x22 = 4, x1 ∈ [−2, 0], x2 ∈ [−2, 0], xi = 0 for all i ≥ 3}.

19

Test instance 4.4 In this instance both the number of continuous and integer variables,
can be set to different values, with the restriction that kc = |{1, . . . , n} \ I| has to be even.

min

kc/2∑
i=1

xi +
n∑

i=kc+1

xi

kc∑
i=kc/2+1

xi −
n∑

i=kc+1

xi

s.t.

kc∑
i=1

x2i ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , n

I = {kc + 1, ..., n}

(T4)

For both objective functions the Lipschitz constant is L =
√
kc/2 + |I| .

For all instances but (T4) we set half an hour (1800 seconds) as time limit. For (T4)
we set the time limit to one hour (3600 seconds).

In Figures 9, 10 and 11 we show our results in the image space. As the set LPNS is
similar for all versions of MOMIX and choices of the branching rule within one test instance,
we present only the results for MOMIX with (br2) within the figures. In black we plot the
points of LPNS. The gray points are the images of the feasible points, i.e., the upper
bounds, computed along the algorithm. The parameter for the set from Theorem 3.13
applied to (T4) with kc = 2 and |I| = 1 is Lδ = 0.1

√
2. Hence, the set described by⋃

z∈LPNS
({z − Lδe} + Rm+) is just a rough lower bound of the nondominated set. From a

practical point of view, in all our test runs, the points from the lists LPNS deliver a good
approximation of the nondominated sets.

Figure 9: The set LPNS of Instance (T2)
for |I| = 5, n = 7.

Figure 10: The set LPNS of Instance (T3)
for |I| = 10, n = 12.

The numerical results on all instances are shown in Table 1. In the first two columns
we report the number of integer (|I|) and the number of continuous variables (|C|) for
each instance. For both, MOMIX and MOMIXlight, we report the total computational time
in seconds (CPU) and the number of considered boxes in the branching tree (#nod).

20

Figure 11: The set LPNS of Instance (T4) for |I| = 1, n− |I| = 2 and the boundary of the
set from Theorem 3.13, Lδ = 0.1

√
2. Right picture shows a detail of the left one.

For MOMIX we additionally report the total time needed by Gurobi to address the single-
objective mixed integer quadratic problems (MIQP). Failures, i.e., instances for which the
time limit was exceeded, are marked with “-”.

MOMIX MOMIXlight
(br1) (br2) (br1) (br2)

|I| |C| CPU #nod MIQP CPU #nod MIQP CPU #nod CPU #nod
Test instance (T2) - time limit 1800s
1 2 40.1 757 2.3 38.7 765 2.3 849.9 609 524.5 669
2 2 30.8 537 1.6 31.6 575 1.7 667.2 555 563.0 641
3 2 31.0 535 1.5 30.8 521 1.5 1381.2 1127 814.4 917
4 2 34.7 567 1.7 65.6 1095 3.0 - - 1134.9 1285
5 2 38.5 587 1.6 81.5 1259 3.2 - - - -

10 2 350.3 2707 9.5 - - - - - - -
Test instance (T3) - time limit 1800s
1 2 15.5 301 0.5 14.6 299 0.4 1045.4 299 1025.6 299

10 2 36.5 413 1.2 27.1 353 0.7 - - - -
20 2 - - - 46.9 411 0.9 - - - -
30 2 - - - 80.4 471 1.1 - - - -
50 2 - - - - - - - - - -
Test instance (T4) - time limit 3600s
1 2 41.5 749 1.3 44.3 771 1.3 296.3 747 225.6 801
2 2 226.2 3683 6.3 240.5 3761 6.2 - - 3090.4 3701
3 2 1354.9 19127 32.3 1321.5 18451 31.1 - - - -
1 4 2199.5 23935 53.5 2246.6 24399 53.8 - - - -

Table 1: Numerical results for test instances (T2), (T3) and (T4)

We observe that MOMIX outperforms MOMIXlight on all test instances. MOMIX is able
to solve a higher number of instances within the time limit. This seems to indicate
that the improved lower bounding procedure of MOMIX and the effort in solving single-
objective mixed integer convex problems pays off. We notice that the time Gurobi needs
to address the single-objective mixed integer subproblems is a small percentage of the
whole computational time.

Regarding the two branching rules, we can notice some differences as soon as the
dimension of the instances grows. In most cases, MOMIX and MOMIXlight with (br2) could
solve instances with a larger number of integer variables.

21

By using the MATLAB profiler on our code we got that the bottleneck in our im-
plementation is fmincon: Most of the CPU time was spent to solve the single-objective
continuous convex problems. Note that fmincon can be replaced by any solver for convex
problems within both MOMIX and MOMIXlight.

In the following, we compare MOMIX with the ε-constraint method for biobjective mixed
integer quadratic optimization on a specific instance. The ε-constraint method minimizes
parameter-dependent single-objective optimization problems of the following form:

min f2(x)
s.t. f1(x) ≤ ε

x ∈ Bg,Z.
(Pε)

In the biobjective case, the minima of the functions f1 and f2 define the interval where the
parameter ε belongs. In our case, the parameter ε varies between min{f1(x) | x ∈ Bg,Z}
and f1(x̂) with x̂ ∈ argmin{f2(x) | x ∈ Bg,Z}. For a step size δ > 0, the parameter ε can
now be chosen equidistantly within that interval by setting ε1 := f1(x̂), and εk+1 := εk− δ
for k ≥ 1. For a better handling of gaps, as they appear for instance in test instance (T2),
one can also adapt the choice of the parameters by setting εk+1 := f1(x

k) − δ where xk

denotes a minimal solution of (Pεk). For both approaches one typically initializes solving
(Pεk+1

) with xk as starting point.
We show in Figure 12 the comparison of MOMIX with the ε-constraint method with

adaptive parameter choiceon the Instance (T2) with |I| = 5, n = 7 and δ = 0.1. The points
of LPNS are black points, while the solutions of the ε-constraint method are diamonds (�).

The ε-constraint method with equidistant parameters solved in total 475 single-objective
mixed integer problems within 5.2 seconds. However, it only computed 52 different so-
lutions, meaning that 423 solved optimization problems did not deliver a new solution.
This could be strongly improved by an adaptive parameter choice which resulted in 50
single-objective mixed integer problems within 0.7 seconds and 50 different solutions.

Note that the approximation of the nondominated set differs. It can be seen that
the first part of the nondominated set (see second picture of Figure 12) is much better
approximated by the solutions of MOMIX. Regarding the other parts of the nondominated set
they are similarly approximated by both MOMIX and the adaptive ε-constraint method (see
third and fourth picture of Figure 12). The choice of the parameters ε gets more difficult
in higher dimensions. Moreover, one does not get covering results as those presented in
Theorem 3.11 or Theorem 3.13.

4.3 Results on a triobjective instance

Our implementation of MOMIX and MOMIXlight can handle instances of (MOMIC) with a
general number of objective functions m ≥ 2. In the following, we present the results
obtained by applying MOMIX with branching rule (br2).

22

Figure 12: Instance (T2) with |I| = 5, n = 7: The set LPNS in comparison with the
solutions of a ε-constraint method with adaptive parameter choice (�). The last three
pictures show each part of the nondominated set separately.

Test instance 4.5 We consider the triobjective mixed integer instance

min

x1 + x4
x2 − x4
x3 + x24

s.t.

3∑
i=1

x2i ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , 4

x4 ∈ Z.

(T5)

We set δ = 0.5 in MOMIX. In order to detect LS , the cover of the efficient set of
Problem (T5), MOMIX needed to explore 1237 nodes. This was done within 190 seconds
CPU time.

In Figure 13 the points in LPNS are plotted in black, giving an approximation of the
nondominated set of Problem (T5). In gray we plot the images of the feasible points
computed along the algorithm.

23

Figure 13: The set LPNS for Problem (T5) from two different perspectives.

4.4 Results on a non-quadratic convex instance

As a further example, we report the results obtained applying MOMIXlight with branching
rule (br1) on the following non-quadratic instance:

Test instance 4.6

min

(
x1 + x3

x2 + exp(−x3)

)
s.t. x21 + x22 ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , 3

x3 ∈ Z

(T6)

Note that the second objective of Problem (T6) is a convex non-quadratic function.

As already mentioned at the beginning of the section, in our implementation of MOMIX
we use GUROBI [24] as mixed integer quadratic solver and we did not include any other
solver within it. Therefore, in order to solve Problem (T6) we applied MOMIXlight setting
δ = 0.1. MOMIXlight was able to detect LS by addressing 1105 nodes within 20 seconds
CPU time. In Figure 14, we plot the obtained approximation of the nondominated set of
Problem (T6).

5 Conclusions

In this paper we devised the first non-scalarization based deterministic algorithm for solv-
ing multiobjective mixed integer convex programming problems. The method is based on
linear outer approximations of the image set. We first build linear outer approximations
of the convex relaxation of the problem by adaptively computing hyperplanes considering
some meaningful local upper bounds. Then, in case we want to improve our lower bound,
we compute additional hyperplanes that outer approximate the convex hull of the true
image set. This is again done in an adaptive way, taking specific local upper bounds into

24

Figure 14: The set LPNS of Problem (T6) obtained by MOMIXlight.

account. The local upper bound sets are updated as soon as a new upper bound is found
and are used both to have a pruning criterion and to approximate the dominated set.
Theoretical results related to the correctness of our algorithm are provided. Numerical
examples on both, biobjective and triobjective, instances show the ability of our proce-
dure to detect nondominated points of multiobjective mixed integer convex programming
problems. We also explored the possibility of using two different branching rules.

6 Acknowledgments

The authors wish to thank the two anonymous referees for their valuable comments and
remarks which helped us to improve the paper. The first author acknowledges support
within the DAAD scholarship No 57440915. She further acknowledges support within the
project No RP1181641D22304F which has received funding from Sapienza, University of
Rome. The third author thanks the Carl-Zeiss-Stiftung and the DFG-founded Research
Training Group 1567 for financial support. The current work of the fourth author is funded
by the Deutsche Forschungsgemeinschaft under project ID 392195690.

References

[1] Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective mixed integer
programming. arXiv preprint arXiv:1709.03668, 2017.

[2] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-
integer nonlinear optimization. Acta Numerica, 22:1–131, 2013.

25

[3] N. Boland, H. Charkhgard, and M. Savelsbergh. A criterion space search algorithm for
biobjective integer programming: The balanced box method. INFORMS J. Comput.,
27(4):735–754, 2015.

[4] N. Boland, H. Charkhgard, and M. Savelsbergh. The L-shape search method for
triobjective integer programming. Math. Program. Comput., 8(2):217–251, 2016.

[5] N. Boland, H. Charkhgard, and M. Savelsbergh. A new method for optimizing a linear
function over the efficient set of a multiobjective integer program. Eur. J. Oper. Res.,
260(3):904–919, 2017.

[6] N. Boland, H. Charkhgard, and M. Savelsbergh. The quadrant shrinking method:
A simple and efficient algorithm for solving tri-objective integer programs. Eur. J.
Oper. Res., 260(3):873–885, 2017.

[7] N. Boland, A. C. Eberhard, F. Engineer, and A. Tsoukalas. A new approach to the
feasibility pump in mixed integer programming. SIAM J. Optim., 22(3):831–861,
2012.

[8] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. The triangle splitting
method for biobjective mixed integer programming. In Jon Lee and Jens Vygen, edi-
tors, Integer Programming and Combinatorial Optimization, pages 162–173. Springer
International Publishing, 2014.

[9] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion space search
algorithm for biobjective mixed integer programming: The triangle splitting method.
INFORMS Journal on Computing, 27(4):597–808, 2015.

[10] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed
integer nonlinear programs. Math. Program., 119(2):331–352, 2009.

[11] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. Algorithms for generating
pareto fronts of multi-objective integer and mixed-integer programming problems.
arXiv:1903.07041v1.

[12] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A new scalarization technique to
approximate pareto fronts of problems with disconnected feasible sets. J. Optim.
Thery Appl., 162(2):428–446, 2014.

[13] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A new scalarization technique and new
algorithms to generate pareto fronts. SIAM J. Optim., 27(2):1010–1034, 2017.

[14] V. Cacchiani and C. D’Ambrosio. A branch-and-bound based heuristic algorithm for
convex multi-objective MINLPs. Eur. J. Oper. Res., 260(3):920–933, 2017.

[15] M. De Santis, S. Lucidi, and F. Rinaldi. A new class of functions for measuring
solution integrality in the feasibility pump approach. SIAM J. Optim., 23(3):1575–
1606, 2013.

26

[16] M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial optimization
problems. Comput. Oper. Res., 34:2674–2694, 2007.

[17] M. Ehrgott, L. Shao, and A. Schöbel. An approximation algorithm for convex multi-
objective programming problems. J. Global Optim., 50(3):397–416, 2011.

[18] M. Ehrgott, C. Waters, R. Kasimbeyli, and O. Ustun. Multiobjective programming
and multiattribute utility functions in portfolio optimization. INFOR Inf. Syst. Oper.
Res., 47(1):31–42, 2009.

[19] Ali Fattahi and Metin Turkay. A one direction search method to find the exact non-
dominated frontier of biobjective mixed-binary linear programming problems. Euro-
pean Journal of Operational Research, 266(2):415–425, 2018.

[20] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Math. Program.,
104(1):91–104, 2005.

[21] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt. Penalty alternating direction
methods for mixed-integer optimization: A new view on feasibility pumps. SIAM J.
Optim., 27(3):1611–1636, 2017.

[22] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.
Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano,
J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP
Optimization Suite 6.0. ZIB-Report 18-26, Zuse Institute Berlin, July 2018.

[23] O. Günlük, J. Lee, and R. Weismantel. Minlp strengthening for separable convex
quadratic transportation-cost ufl. IBM Res. Report, pages 1–16, 2007.

[24] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[25] J. Jahn. Vector Optimization. Springer, 2009.

[26] K. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the search
region in multi-objective optimization. Eur. J. Oper. Res., 245(3):767–778, 2015.

[27] A. Löhne, B. Rudloff, and F. Ulus. Primal and dual approximation algorithms for
convex vector optimization problems. J. Global Optim., 60(4):713–736, 2014.

[28] G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-one
multiple objective linear programming. Eur. J. Oper. Res., 107(3):530–541, 1998.

[29] G. Mavrotas and D. Diakoulaki. Multi-criteria branch and bound: A vector maxi-
mization algorithm for mixed 0-1 multiple objective linear programming. Appl. Math.
Comput., 171(1):53–71, 2005.

[30] J. Niebling and G. Eichfelder. A branch-and-bound-based algorithm for nonconvex
multiobjective optimization. SIAM J. Optim., 29(1):794–821, 2019.

27

[31] Julia Niebling and Gabriele Eichfelder. A branch-and-bound algorithm for bi-
objective problems. In Proceedings of the XIII Global Optimization Workshop
GOW16, pages 57–60, 2016.

[32] Y. Peng and L. Yu. Multiple criteria decision making in emergency management.
Comput. Oper. Res., 42:1–2, 2014.

[33] Tyler Perini, Natashia Boland, Diego Pecin, and Martin Savelsbergh. A criterion
space method for biobjective mixed integer programming: The boxed line method.
INFORMS J. Comput., 2019.

[34] S.A.B. Rasmi, A. Fattahi, and M. Türkay. Sass: slicing with adaptive steps search
method for finding the non-dominated points of tri-objective mixed-integer linear
programming problems. Ann. Oper. Res., 2019.

[35] Stefan Rocktäschel. A Branch-and-Bound Algorithm for Multiobjective Mixed-integer
Convex Optimization. Best Masters Book Series. Springer, 2020.

[36] Payman Ghasemi Saghand, Hadi Charkhgard, and Changhyun Kwon. A branch-and-
bound algorithm for a class of mixed integer linear maximum multiplicative programs:
A bi-objective optimization approach. Comput. Oper. Res., 101:263–274, 2019.

[37] F. Sourd and O. Spanjaard. A multiobjective branch-and-bound framework: Applica-
tion to the biobjective spanning tree problem. INFORMS J. Comput., 20(3):472–484,
2008.

[38] Banu Soylu and Gazi Bilal Yldz. An exact algorithm for biobjective mixed integer
linear programming problems. Computers & Operations Research, 72:204 – 213, 2016.

[39] P. Xidonas, G. Mavrotas, and J. Psarras. Equity portfolio construction and selection
using multiobjective mathematical programming. J. Global Optim., 47(2):185–209,
2010.

28

	1 Introduction
	2 Definitions and Notations
	3 MOMIX: An Outer Approximation based Branch-and-Bound Algorithm for (MOMIC)
	3.1 Computation of upper bounds and local upper bounds
	3.2 Determining lower bounds and pruning nodes
	3.3 Correctness of MOMIX

	4 Numerical Results
	4.1 Branching rules
	4.2 Results on scalable instances
	4.3 Results on a triobjective instance
	4.4 Results on a non-quadratic convex instance

	5 Conclusions
	6 Acknowledgments

