Efficient and truthful mechanisms to price time on remote servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers online revenue maximization for a unit capacity server, when jobs are non preemptive, in the Bayesian setting: at each time step, one job arrives, with parameters drawn from an underlying distribution. We design an efficiently computable truthful posted price mechanism, which maximizes revenue in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic. We also show the pricing mechanism is robust to learning the job distribution from samples, where polynomially many samples suffice to obtain near optimal prices.
Online revenue maximization for server pricing / Boodaghians, Shant; Fusco, Federico; Leonardi, Stefano; Mansour, Yishay; Mehta, Ruta. - (2020), pp. 4106-4112. (Intervento presentato al convegno International Joint Conference on Artificial Intelligence tenutosi a Yokohama, Japan (Virtual Conference)) [10.24963/ijcai.2020/568].
Online revenue maximization for server pricing
Boodaghians, Shant;Fusco, Federico;Leonardi, Stefano;
2020
Abstract
Efficient and truthful mechanisms to price time on remote servers/machines have been the subject of much work in recent years due to the importance of the cloud market. This paper considers online revenue maximization for a unit capacity server, when jobs are non preemptive, in the Bayesian setting: at each time step, one job arrives, with parameters drawn from an underlying distribution. We design an efficiently computable truthful posted price mechanism, which maximizes revenue in expectation and in retrospect, up to additive error. The prices are posted prior to learning the agent's type, and the computed pricing scheme is deterministic. We also show the pricing mechanism is robust to learning the job distribution from samples, where polynomially many samples suffice to obtain near optimal prices.File | Dimensione | Formato | |
---|---|---|---|
Boodaghians_Online-revenue_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
153.52 kB
Formato
Adobe PDF
|
153.52 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.