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Abstract

Efficient and truthful mechanisms to price time on
remote servers/machines have been the subject of
much work in recent years due to the importance of
the cloud market. This paper considers online rev-
enue maximization for a unit capacity server, when
jobs are non preemptive, in the Bayesian setting:
at each time step, one job arrives, with parame-
ters drawn from an underlying distribution. We de-
sign an efficiently computable truthful posted price
mechanism, which maximizes revenue in expecta-
tion and in retrospect, up to additive error. The
prices are posted prior to learning the agent’s type,
and the computed pricing scheme is deterministic
We also show the pricing mechanism is robust to
learning the job distribution from samples, where
polynomially many samples suffice to obtain near
optimal prices.

1 Introduction

Designing mechanisms for a desired outcome with strate-
gic and selfish agents is an extensively studied problem in
economics, with classical truthful mechanisms by [Myerson,
19811, and Vickrey-Clarke-Groves [Vickrey, 1961]. The ad-
vent of e-commerce has shifted the priority from traditional
objectives to computational efficiency, leading to simple, ap-
proximate mechanisms when optimal mechanisms are com-
putationally intractable. Starting with [Nisan and Ronen,
19991, theoretical computer science has contributed greatly
to the field, in both fundamental problems and specific appli-
cations, such as designing truthful mechanisms for the max-
imization of welfare and revenue, or learning distributions
of agent types, menu complexity, and dynamic mechanisms
(e.g., [den Boer, 2015; Cole and Roughgarden, 2014].)

We consider this question in the setting of selling compu-
tational resources on remote servers or machines (c¢f. [Tang et
al., 2017; Babaioff et al., 2017]), one of the fastest growing
markets on the Internet. Several difficulties arise when selling
goods in the cloud market. First of all, the goods (resources)
are assigned non-preemptively and thus have strong comple-
mentarities. Furthermore, the supply (server capacity) is lim-
ited, so any mechanism should trade off immediate revenue

for future supply. Finally, mechanisms must be incentive-
compatible, to avoid the unpredictable effects of non-truthful,
strategic, behaviour on the performance of the system. This
leads us to ask the following question: can we design an ef-
ficient, truthful, and revenue-maximizing mechanism to sell
time non-preemptively on a unit-capacity server?

We design a posted-price mechanism which maximizes ex-
pected revenue for agents/buyers arriving online, with param-
eters of value, length and maximum delay, drawn from an un-
derlying distribution. Our focus will be on devising online
mechanisms in the Bayesian setting.

Three key aspects distinguish our problem from standard
online scheduling: (i) In our setting, as time progresses,
the server clears up, allowing longer jobs to be scheduled
in the future if no smaller jobs are scheduled until then.
(i1) Scheduling the jobs depends both on the interests of the
mechanism designer (revenue), and the jobs being scheduled
(cost). (iii) As the mechanism designer, we do not have ac-
cess to job parameters in an incentive-compatible way before
deciding on a posted price menu.

In our online model, time on the server is discrete. At every
time step, a job arrives on the server, with a value V, length
requirement L, and maximum delay D. These parameters are
drawn from a common distribution, i.i.d. across jobs. The
job wishes to be scheduled for at least L consecutive time
slots, no more than D time units after its arrival, and wishes
to pay no more than V'; and will minimize price within these
constraints. The mechanism designer never learns the param-
eters of the job. Instead, she posts a price menu of (length,
price) pairs, and the minimum available delay s. The job sim-
ply accepts if it can be scheduled, i.e. D > s and for some
¢ > L, the price for ¢ is at most V. If, at time epoch ¢, an
agent chooses option (¢, 7;), then she pays 7, and her job is
allocated to the interval [t + s,t + s + £]. She will choose
the option which minimizes 7y. Throughout this paper we as-
sume that the random variables L, V, D are discrete and have
finite support.

1.1  Our Results and Structure of the Paper

In this work, we provide conditions for the existence of a
posted-price Bayesian revenue-maximizing truthful mecha-
nism for server pricing. Also we show how it can be com-
puted efficiently, if those conditions hold.
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To give these results, we first study the underlying op-
timization problem ignoring strategic considerations of the
jobs. In Section 2 we model the problem of finding a revenue
maximizing pricing strategy as a Markov Decision Process
(MDP). Given a price menu (length,price) and a state (mini-
mum available delay) s at time ¢, the probability of transition
to any other state at time ¢+1 is obtained from the distribution
of the job’s parameters. In Section 3 we show that the revenue
maximizing pricing strategy can be efficiently computed via
backwards induction given the distribution.

Unfortunately, the optimal posted price strategy does not
necessarily imply a truthful mechanism. For example, we
show that some basic monotonicity conditions of truthful
mechanisms are violated if the valuation is not positively
correlated with the length of the job. On the positive side,
in Section 3.3 we prove that the optimal pricing strategy is
monotone in length under a distributional assumption, which
we show is satisfied when the jobs’ valuation follows a log-
concave distribution, parametrized by length. Log-concave
distributions are exactly those which have a monotone hazard
rate [Wellner, 2012], a widely studied setting in the design of
Bayesian mechanisms. Under the above mentioned assump-
tions, we conclude that truthfulness is possible for the optimal
pricing mechanism if the distributions are known.

In Section 3.4, we also show that the revenue obtained by
this optimal posted-price strategy concentrates well around its
mean. Concentration of the revenue obtained by the truthful
optimal Bayesian mechanism is a property of practical and
theoretical importance that is also used in the study of the
robustness of the pricing strategy in settings of limited infor-
mation on the distributions.

We show (Section 4.2) that a near optimal solution is still
obtained when the distribution is known up to small error.
In Section 4.3 we complement this result by analyzing the
performance of the proposed pricing strategy when the dis-
tribution is only known from samples collected through the
observation of the agents’ decisions. We provide a truthful
posted-price e-approximate mechanism when the number of
samples is polynomial in 1/¢ and the size of the support of
the distribution. Finally, Section 5 is devoted to summarizing
our results and describing future directions of research.

1.2 Related Work

Much recent work has focused on designing efficient mech-
anisms for pricing cloud resources. Chawla et al. [Chawla
et al., 2017] recently studied “time-of-use” pricing mecha-
nisms, to match demand to supply with deadlines and on-
line arrivals. Their result assumes large-capacity servers, and
seeks to maximize welfare in a setting in which the jobs ar-
riving over time are not i.i.d.. [Azar et al., 2015] provides a
mechanism for preemptive scheduling with deadlines, max-
imizing the total value of completed jobs. Another possible
objective for the design of incentive-compatible scheduling
mechanisms is the total value of completed jobs, which have
release times and deadlines. [Porter, 2004] solves this prob-
lem in an online setting, while [Carroll and Grosu, 2008], in
the offline setting for parallel machines, and [Strohle er al.,
20141, in the online competitive setting with uncertain sup-
ply. [Jain et al., 2013] focuses on social welfare maximization

for non-preemptive scheduling on multiple servers, and ob-
tains a constant competitive ratio as the number of servers in-
creases. Our work differs from these by considering revenue
maximization and stochastic job types which are i.i.d. over
time. [Kilcioglu and Rao, 2016] addresses computing a price
menu for revenue maximization with different machines. Fi-
nally, [Babaioff er al., 2017] proposes a system architecture
for scheduling and pricing in cloud computing.

Posted price mechanisms (PPM) have been introduced by
[Sandholm and Gilpin, 2004] and have gained attention due
to their simplicity, robustness to collusion, and their ease of
implementation in practice. One of the first theoretical re-
sults concerning PPM’s is an asymptotic comparison to clas-
sical single-parameter mechanisms [Blumrosen and Holen-
stein, 2008]. They were later studied by [Chawla et al,
2010] for the objective of revenue maximization, and fur-
ther strengthened by [Kleinberg and Weinberg, 2012] and
[Diitting and Kleinberg, 2015]. [Feldman et al., 2015] shows
that sequential PPM’s can 1/2-approximate social welfare for
XOS valuation functions, if the price for an item is equal to
the expected contribution of the item to the social welfare.

Sample complexity for revenue maximization has recently
been studied in [Cole and Roughgarden, 2014] showing that
polynomially many of samples suffice to obtain near optimal
Bayesian auction mechanisms. [Morgenstern and Rough-
garden, 2015] propose a statistical-learning approach with
arbitrarily-near-optimal revenue. The same authors study the
problem of learning simple auctions from samples [Morgen-
stern and Roughgarden, 2016].

2 Model

Notation. In what follows, the variables ¢, £ or L, v or V,
and d or D are reserved for describing the parameters of a
job that wishes to be scheduled. Respectively, they repre-
sent the arrival time ¢, required length ¢, value v, and max-
imum allowed delay d. The lowercase variables represent
fixed values, whereas the uppercase represent random vari-
ables. Script-uppercase letters £, V, D represent the supports
of the distributions on L, V, and D, respectively; and the
bold-uppercase letters L, V, D represent the maximum values
in these respective sets. Finally, 7 is reserved for pricing pol-
icy, whereas p is reserved for probabilities.

Single-Machine, Non-Preemptive, Job Scheduling. A se-
quence of random jobs wish to be scheduled on a server, non-
preemptively, within a time and cost constraint. Formally,
at every time step ¢, a single job with parameters (L, V, D)
is drawn from an underlying distribution @) over the space
L xV x D. We remark we are not assuming independence
between L,V and D, so the setting is quite general. Later
we are only going to impose some mild monotone hazard
rate assumptions on the distribution. Furthermore our set-
ting contemplates also the possibility of time step with no job
showing up: it corresponds to (L = 0,V = 0, D = 0). The
job wishes to be scheduled for a price # < V' in an interval
[a,b] suchthata —¢t < Dand b—a > L.

Price Menus. Our goal is to design a take-it-or-leave-it,
posted-price mechanism which maximizes expected revenue.
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At each time period, the mechanism posts a “price menu” and
an earliest-available-time s;, indicating that times ¢ through
t + s — 1 have already been scheduled. (s; will hence-
forth be referred to as the state of the server.) We let S :=
{0, ..., D + L} to be the set of all possible states and 7" to
be the time horizon. The state of the server at a given time
t is naturally a random variable which depends on the earlier
jobs and on the adopted policy 7. As before, we will denote
with s or s; the fixed value, and with S or .S; the correspond-
ing random variable. The price menu will be given by the
function 7 : [T] x S x L — R, i.e., if we are a time ¢ and
the server is in state s;, then the prices are set according to
me(s¢,+) + L — R. The reported pair (m:(s¢, ), $¢) is com-
puted by the scheduler’s strategy, which we determine in this
paper. Once this is posted, a job (L, V, D) is then sampled
i.i.d. from the distribution ().

If V > m(st, ) for some £ > L, and D > s, then the
job accepts the schedule, and reports a length ¢ > L which
minimizes the price. Otherwise, the job reports ¢ = 0 and is
not scheduled. To guarantee truthfulness, it suffices to have
m¢(s, ) be monotonically non-decreasing for every state s:
the agent would not want a longer interval since it costs more,
and would not want one of the shorter intervals since they
cannot run the job. It should be clear that the mechanism’s
strategy is to always report monotone non-decreasing prices,
as a decrease in the price menu would only cause more uti-
lization of the server, without accruing more revenue. The
main technical challenge in this paper, then, is to show that
under some assumptions, the optimal strategy is monotone
non-decreasing, and efficiently computable.

Revenue Objective. Revenue can be measured in either a
finite or an infinite discounted horizon. In the former (finite)
case, only 7' time periods will occur, and we seek to max-
imize the expected sum of revenue. In the infinite-horizon
setting, future revenue is discounted, at an exponentially de-
caying rate. Formally, revenue at time ¢ is worth a 7! fraction
of revenue at time 0, for some fixed v < 1 (e.g., [Puterman,
2005]). In this paper, due to space constraints, we are going
to focus only on the finite case. We argue, though, that sim-
ilar results can be shown also in the infinite discounted set-
ting. Recall that the job parameters are drawn independently
at random from the underlying distribution, so the scheduler
can only base their “price menu” on the state of the system,
the current time and the information on the distribution Q).
Thus, the only realistic strategy is to fix a state-and-time-
dependent pricing policy 7 : [T] X S x L — R, “m(s,£)”,
where [T] :={0, 1, ..., T}.

Let X = {Xl = (17 Ll; V17 Dl)a XQ = (27 L27 ‘/23 D2)
... } be the random sequence of jobs arriving, sampled i.i.d.
from the underlying distribution. Let 7 : [T] x S x £ — R
be the pricing policy. We denote as Rev (X, ) the revenue
earned at time ¢ with policy 7 and sequence X'. If &} does
not buy, then Rev; (X, 7) = 0, and otherwise, it is equal to
m¢(8t, Lt). We denote as CmlIRevy the total (cumulative) rev-
enue earned over the T periods. Thus,

CmlRevy (X, 7) = ZtT:o Rev: (X, ).

We will also need the expected-future-revenue, given a cur-
rent time and server state, which we will denote as follows:

UF(s) = Exor | Y0, Revi(m, X) ‘St - s} e

The subscript of the expectation X’>; denotes that we consider
only jobs arriving from time ¢ onward. Our objective is to find
the pricing policy 7 which maximizes UJ (s = 0). Call this
7*, and denote the expected revenue under 7* as U;(+).

3 Bayes-optimal Strategies for Server Pricing

In this section we seek to compute an optimal monotone pric-
ing policy 7 : [T] x § x £ — R which maximizes revenue
in expectation over 7" jobs sampled i.i.d. from an underlying
known distribution ). We first model the problem of maxi-
mizing the revenue in online server pricing as a Markov De-
cision Process that admits an efficiently-computable, optimal
pricing strategy. The main contribution of this section is to
show that, for a natural assumption on the distribution @), the
optimal policy is monotone. We recall that this allows us to
derive truthful Bayes-optimal mechanisms.

3.1 Markov Decision Processes

We show that the theory of Markov Decision Processes is
well suited to model our problem. A Markov Decision Pro-
cess is, in its essence, a Markov Chain whose transition prob-
abilities depend on the action chosen at each state, and where
to each transition is assigned a reward. A policy is then a
function ™ mapping states to actions. In our setting, the states
are the states of the system outlined in Section 2 (i.e., the pos-
sible delays before the earliest available time on the server),
and the actions are the “price menus.” At every state s, a
job of a random length arrives, and with some probability,
chooses to be scheduled, given the choice of prices. The next
state is either max{s — 1,0}, if the job does not choose to be
scheduled (since we have moved forward in time), or s+/—1,
if a job of length ¢ is scheduled, since we have occupied ¢
more units. The transition probabilities depend on the distri-
bution of job lengths, and the probability that a job accepts to
be scheduled given the pricing policy (action). Formally,

P[St+1 = S¢ —|—E— 1] =
P[Ly =€,V > mi(st,£), Dy > s5¢ + (]
1 — Zkzo P[St+1 = S¢ + ]C}

I

if¢>1
if{=20

(Transitions to state “—1" should be read as transitions to
state “0”.) Note that a job of length £ may choose to pur-
chase an interval of length greater than ¢, which would render
these transition probabilities incorrect. However, this may
only happen if the larger interval is more affordable. It is
therefore in the scheduler’s interest to guarantee that (s, -)
in monotone non-decreasing in ¢, incentivizing truthfulness,
since this increases the amount of server-time available, with-
out affecting revenue. Thus we restrict ourselves to this case.
It remains to define the transition rewards, 7.e. the revenue
earned. Formally, a transition from state s; to sy + ¢ — 1
incurs a reward of (s, ), whereas a transition from state s;
to sy — 1 incurs O reward. We wish to compute a policy 7 in
such a way as to maximize the expected cumulative revenue,
given as the sum of all transition rewards in expectation.
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3.2 Solving for the Optimal Policy with
Distributional Knowledge

In this section, we present a modified MDP whose optimal
policies can be efficiently computed, and show that these poli-
cies are optimal for the original MDP. For now, we assume
that the mechanism designer is given access to the underly-
ing distribution ). However, in the following sections, we
will show that if the distribution () is estimated from sam-
ples, then solving for the MDP on this estimated distribution
is sufficient to ensure sufficiently good revenue guarantees.
Since the problem has been modelled as a Markov Deci-
sion Process (MDP), we may rely on the wealth of literature
available on it, in particular we will leverage the backwards
induction algorithm (BIA) of [Puterman, 2005] Section 4.5.
We will however need to ensure that this standard algorithm
(1) runs efficiently, and (ii) returns a monotone pricing policy.
Note that past prices do not contribute to future revenue
insofar as the current state remains unchanged. Thus, to com-
pute optimal current prices, we need only know the current
state and expected future revenue. This allows us to use the
BIA. The idea is to compute the optimal time-dependent pol-
icy, and the incurred expected reward, for shorter horizons,
then use this to recursively compute them for longer horizons.
The total runtime of the BIA is O(T'|S||.A|), where S and
A denote the action and state spaces, respectively. Note that
the dependence on 7' is unavoidable, since any optimal pol-
icy must be time-dependent. Recall that I and D denote
the maximum values that L and D can take, respectively,
and V is the set of possible values that V' can take. De-
note K := max{D + L,|V|}. A naive action space has
|S| =D +L <K, and | A] < K. Thus, a naive definition of
the MDP bounds the runtime at KO which is intractable.
Requiring monotonicity only affects lower-order terms.

Modified MDP. To avoid this exponential dependence, we
can be a little more clever about the definition of the state
space: instead of states being the possible server states, we
define our state space as possible (state, length) pairs. Thus,
when the MDP is in state (s, £), the server is in state s, and a
job of length ¢ has been sampled from the distribution. Our
action-space then is simply the possible values of m(s, £),
and the transition probabilities and rewards become:

Pl(s,€) — (s, 0)|x] =
PV > m(s,£),D > s|[L={P[L' =V]if s =s+ -1
PV < m(s,€)or D < s|L =4P[L' = V']ifs’ =s—1
0  otherwise

R((s,0) = (s',0")|m) = {

Therefore, we get |[S| = (D + L) - L < K2, and |A| <
K. Thus, the runtime of the algorithm becomes O(TK?). It
remains to prove that it is correct. We begin by claiming that
these two MDPs are equivalent in the following sense:

mi(s,£)if s =s+0—1
0 otherwise

Lemma 1. For any fixed pricing policy 7w : [T] xSx L — R,
UM(s)=Ep [uf(s,L)],VteT, s€S,

where the UT (+)’s are as in (1), and the u} (-, -)’s are from the

modified MDP.
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This lemma, however, does not suffice on its own, as agents
may behave strategically by over-reporting their length, if the
prices are not increasing. This would alter the transition prob-
abilities, breaking the analysis. We will see that under a mild
assumption, this can not happen, as the optimal policy for
non-strategic agents will be monotone, and therefore truth-
ful. Given this new state space, we call MODIFIEDBIA the
classical Backward induction on it.

3.3 Monotonicity of the Optimal Pricing Policies

Recall that the solution of the more efficient MDP formula-
tion is only correct if we can show that it is always monotone
without considering the strategic behaviour of agents, ensur-
ing incentive-compatibility of the optimum.

An optimal monotone strategy cannot be obtained for all
the distributions on L, V, and D. As an example, if a job’s
value is a function of their length (fully correlated), the opti-
mal policy is to price-discriminate by length. If this function
is not monotone, the optimum won’t be either. To this end,
we introduce the following assumption, discussed below.

BV >4/ \D>s|L=(]

Assumption 1. The quantity PV DesI=l] is monotone

non-decreasing in !, for any state s and 0 < p < 1 fixed.

This is not a natural, or immediately intuitive assumption.
However, we will show that it is satisfied if the valuation of
jobs follows a log-concave distribution which is parametrized
by the job’s length, and where the valuation is (informally)
positively correlated with this length. Log-concave distribu-
tions are also commonly referred to as distributions having
a monotone hazard rate, and it is common practice in eco-
nomics to require this property of the agent valuations.

Lemma 2. Let, V;’ denote the marginal rv. V conditioned
on L = {and D > s. Let Z be a continuously-supported
rv. and vi < s < --- € ROIFVY is distributed as vy} - Z,
i - Z|, Z+~;, or | Z + ~; |, then Assumption 1 is satisfied
if Z is log-concave, or if the y’s do not depend on .

Many standard (discrete) distributions are (discrete) log-
concave random variables, including the uniform, Gaussian,
logistic, exponential, Poisson, binomial, etc. [Wellner, 2012].
In the above, the  terms represent a notion of spread or shift-
ing, parametrized by the length, indicating some amount of
positive correlation. It remains to show price monotonicity
under the above assumption. First, we begin with the follow-
ing, which holds for arbitrary distributions.

Lemma 3. Let U (s) be the expected future revenue earned
starting at time t in state s, for the optimal policy computed by
MODIFIEDBIA. Then the function s — U;(s) is monotone
non-increasing in s for any t fixed.

This lemma ensures that over-selling time on the server can
only hurt the mechanism. This allows us to conclude

Lemma 4. [f the job parameters satisfy the above assump-
tion, then for all £, s,t, we have 7y (s, ) < my(s,{+ 1).

Sketch. The idea is to show that, for any price u less than the
optimum 75 (s, £), the difference in revenue between charging
w and 7f (s, {) to jobs of length ¢ is less than the difference
in revenue between the same prices for jobs of length ¢ +
1. This is achieved by applying the assumption to recursive
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definition of future revenue, along with the previous lemma.
Thus, we can conclude that the optimal price 7} (s, ¢ + 1)
must be greater than 7} (s, £).

With Lemma 4 we finally have:

Theorem 1. The online server pricing problem admits an op-
timal monotone pricing strategy when the variables L, V', and
D satisfy assumption 1. Also, whenV is finitely supported, an
exact optimum can be computed in time O(TK?).

3.4 Concentration Bounds on Revenue

In this section, we show that the revenue of arbitrary policies
concentrates around their mean. In particular it holds true
for the (near) optimal strategies described above. This also
allows us to argue later that, for any estimate Q of Q, the pol-
icy given by executing MODIFIEDBIA on the distribution Q
will perform well with respect to (), both in expectation, and
with high probability. To show concentration, we consider
the Doob or exposure martingale of the cumulative revenue
function, introduced in Section 2. Define

R :=E [CmIRevy(m, X)| X1, ..., X)) )

where the X;’s are jobs in the sequence X and the expected
value is taken with respect to &;4q,... Xp. Thus, Rf is
the expected cumulative revenue, and R7 is the random cu-
mulative revenue. To formally describe this martingale se-
quence, we will introduce some notation, and formalize some
previous notation. Recall that A}, X5, ... is a sequence of
jobs sampled i.i.d. from an underlying distribution Q. Fix
a pricing policy 7 : [T] x S x L — R. Note that the state
at time ¢ is a random variable depending on both the (de-
terministic) pricing policy and the (random) A7, ..., X_;.
We denote it Sy(m, X), or S for short. Formally, suppose
Xt = (%, Lt, Dt), then St+1(7f7 X) = St(ﬂ'7 X) — 1 if either
Vi < me(St, Lt) or Dy < St, and otherwise S;q1(m, X) =
Si(m, X) + Ly — 1. Furthermore, let Rev;(m, X') be equal
to O in the first case above (the ¢-th job is not scheduled),
and (S, L¢) otherwise. Thus, S;(m, X') and Revy(w, X)
are functions of the random values X7, ..., X; for 7 fixed.
Note that Rev, implicitly depends on S;. Let Xs; :=
(Xi-l-la Xi+27 .. ) and Xgi = (Xl, . Xz) Recalling that
CmIRevr (X, 7) = Zthl Rev, (X, ), we have that

RT = (31_o Reve(m, Xy) + UFyy (Siga (7, X<i)).

We wish to show that CmlIRev (X, ) concentrates around its
mean. Since R is the expected revenue due to 7, and R is
the (random) revenue observed, it suffices to show | R — R7.|
is small, which we will do by applying Azuma’s inequality,
after showing the bounded-differences property.

Theorem 2. Let X be a finite sequence of T jobs sampled
i.i.d. from Q, and let ™ be any monotone policy. Then, with
probability 1 — 6,

|CmiIRevy (X, ) — Ex/[CmiRevy (X 7)]| < V4/2log(2)T.

In particular it holds true for the (approximately) optimal
pricing strategies of Theorem 1.
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4 Robustness of Pricing with Approximate
Distributional Knowledge

In this section, we show that results analogous to Theorems 1
and 2 may be obtained even in the case in which we do not
have full knowledge of the distribution (), but only an esti-

mate Q We then show how to obtain Q from samples.

4.1 Robustness of the Pricing Strategy
Suppose, for some € > 0, we are given some estimate of ()
called Q = (D, L, V') with the following property:

P(L=4V >v,D>s)—P(L=10V >v,D>s)| <e,
3)

Vs € S,¢ € Land v € V. For the sake of brevity, we abuse
notation and denote the condition in (3) as |Q—Q| < . Later,
we will need to estimate the value P[L = ¢,—(V > v,D >
s)], given Q, but this is P[L = {] - P[L = £,V > v,D > s] .
The left-hand term is equal to P[L = ¢,V > 0,D > 0], and so
we have access to both terms. The estimation error is additive,

so the deviation is at most 2¢.
Denote pf , :=P[V > 7'(s,£),D > s|L = /], and recall

U7 (s) i= 3 PIL = €)(pf o (mis,0) + Ui (s + £~ 1))+
- H(1 - pf )T (s - 1),

the expected revenue from time ¢ onwards, conditioning on
Sy = s. Let U7 (-) be the same as U/ (-), but where the vari-
ables are distributed as Q. As before, let U;*(-) be U7 (-) for
m = 7%, the Bayes-optimal policy returned by our Algorithm,
and U;(-) defined similarly but with respect to Q. We will
show that U7 (-) is a good estimate for U} (-).

Lemma 5. Let Q, and Q such that |Q — Q| < ¢, then, ¥ t, s,
U (s) — U (s)] < 2(T — t)VLe.
4.2 Learning the Job Distribution from Samples

As discussed above, we show here how to compute a Q from

samples of @, such that |Q— Q| is small with high probability.
In particular we present a sampling procedure which respects
the rules of the pricing server mechanism. When a job arrives,
we only learn its length, and only if it agrees to be scheduled.
Thus, we are not given full samples of (), complicating the
learning procedure. Thanks to the previous section, we know
that a policy which is optimal with respect to Q will be close-
to-optimal with respect to ().

We remark, however, that the power of the results of the
previous section is not exhausted by this application: one may
apply directly the robustness results to specific problems in
which the Q is subject to (small) noise or an approximate
distribution is already known from other sources.

Let X = {(Lh Vlle)a ceey (Ln, V»,“Dn),} be an i.i.d.
sample of n jobs from the underlying distribution (). Note
that the expectation of an indicator is the probability of the
indicated event. Fix a length ¢, a state s, and a value v. As a
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consequence of Hoffding’s inequality, with probability 1 — 4,

the following quantity is smaller than +/log(2/5) / 2n ,

LS Ly = £, Vi > v, Dy Zs]—IP’[L:E,Vzv,Dzs}‘

“

Sampling Procedure. We wish to estimate the value P[L =
¢,V > v, D > s] for all choices of ¢, v, and s. Fixing v and
s, we may repeatedly post prices m(s,¢) = v and declare
that the earliest available time is s, then record (i) which job
accepts to be scheduled, and (ii) the length of each scheduled
job. Let e > 0 and n > log(2/6)/(22), then by (4), the
sample-average of each value will have error at most € with
probability 1 — &, for any one choice of (¢, v, s).

Repeating this process for all < K2 choices of v € V and
s € S gives us estimates for each. For the estimate hold over
all choices of /, v, s, it suffices to take the union bound over
all < K3 values (incl. ¢), and scaling accordingly. If we
take n > 3log(2K/d)/(2&?) samples for each of the < K2
choices of v and s, then simultaneously for all ¢, v, and s,
the quantity in (4) is at most . So we have obtained the
“|Q — Q| < £” condition. It should be noted that, for this
sampling procedure, if a job of length ¢ is scheduled, we must
possibly wait at most ¢ times units before taking the next sam-
ple to clear the buffer. This blows up the sampling time by a
factor of O(L). The following result follows immediately
from Lemma 5 and Hoffding’s inequality.

Lemma 6. Let n, (), and Q, be as above. For all ¢ > 0,
if n > 6TK*log(2K/d)/e% we have that with probability
1—-0,|U;(s) = Uf(s)| < eforallt,s.

4.3 Performance of the Computed Policy

We use here the result of the previous sections to analyze
the performance of the policy output by MODIFIEDBIA af-
ter the learning procedure. By the estimation of revenue, the
best policy in estimated-expectation is near-optimal in expec-
tation. Since revenues from arbitrary policies concentrate, we
get near-optimal revenue in hindsight.

Formally, for ¢ > 0, Lemma 6 gives us that if the sample-
distribution @ is computed on . > 6TK* log(2K/4) /2 sam-
ples, then with probability 1 — ¢ over the samples, |U; (s) —
U7 (s)] < e. Note that Uj_,(s = 0) is exactly the expected
cumulative revenue of the optimal policy. For clarity of no-
tation, denote ECRevr(7]|Q) = Ex~g [CmIRevy (X, )],
then for sufficiently many samples

[ECRevy (*|Q) — ECRevy (7*]Q)| < e,

with probability 1 — §. This observation allows us to then
conclude

Theorem 3. Let (Q be the underlying distribution over jobs.
Let e > 0, and n > 24TK*log(8K/§)/e?. Then in time
O(TK3+nl), we may compute a policy 7 which is monotone
in length, and therefore incentive compatible, such that for
any policy 7, with probability (1 — §),

CmlRevr (X, 7) >

CmlRevy (X, m) —2V/2log(8/s)(T + 1) — ¢

4111

Proof. We have chosen n > 6TK*1og(2K/(5/4))/(g/2)%.
Let 7* be the optimal policy for the true distribution (). By
Theorem 2, we have

|CmIRevr (X, ) —ECRevy(7|Q)| < Vy/21og(8/6)(T + 1)
with probability 1 — 6/4 for both 7 and #. Furthermore,
by Lemma 6, [ECRevr(7|Q) — ECRevy (7]Q)| < /2 with
probability 1 — §/4, for both 7 = # and 7*. This is because

from the point of view of 7, Q is the true distribution, and )
is the estimate. Taking the union bound over all four events

above, and recalling that # maximizes ECRev(7|Q), and 7*
maximizes ECRevr(7|Q), we get the following with proba-
bility 1 — o:

CmlRevy (X, )

> ECRevy(7]Q) — V4/21log(3)(T + 1) (Thm. 2)
> ECRevy (7|Q) — Vy/2log(3)(T+ 1) —¢/2  (Lem. 6)

> ECRevy (1*(Q) — Vy/2log(3)(T + 1) —¢/2 (defn.)
> ECRevy (*|Q) — Vy/2log(3)(T +1) —e  (Lem. 6)
> ECRevy(7|Q) — Vy/2log(3)(T + 1) — ¢ (defn.)

> CmlIRevy (X, m) — 2V, /2log(3)(T'+ 1) —e (Thm. 2)

as desired. O

5 Conclusions and Future Work

In summary, we propose to price time on a server by first
learning the distribution over jobs from samples and then
computing the Bayes-optimal policy from the estimated dis-
tribution. Our learning algorithm is simple: we sample the
distribution through the observation of n jobs at artificially
fixed prices and server-states, and learn the job parameters
depending on whether they accept to be scheduled. Using
these observations, we build a distribution Q We then run
MODIFIEDBIA on Q and compute an optimal policy 7 for Q
We are guaranteed that the policy prices monotonically (due
to Lemma 3), and hence it is incentive compatible, which im-
plies the correctness of the estimated revenue.

Future Work. There are many natural extensions to this
work. For example, one could consider a multi-server set-
ting, settings where jobs can request to be scheduled later
than the earliest available time, or settings where jobs need
various quantities of differing resources, such as memory and
computation time.
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