The microbial ecology of faba bean sourdoughs obtained from an Italian (Ita) and a Finnish (Fi) cultivar, belonging respectively to Vicia faba major and V. faba minor groups, was described by 16S rRNA gene pyrosequencing and culture-dependent analysis. The sourdoughs were propagated with traditional backslopping procedure throughout 14 days. Higher microbial diversity was found in the sourdough deriving from V. faba minor (Fi), still containing residual hulls after the milling procedure. After 2 days of propagation, the microbial profile of Ita sourdough was characterized by the dominance of the genera Pediococcus, Leuconostoc and Weissella, while the genera Lactococcus, Lactobacillus and Escherichia, as well as Enterobacteriaceae were present in Fi sourdoughs. Yeasts were in very low cell density until the second backslopping and were not anymore found after this time by plate count or pyrosequencing analysis. Among the lactic acid bacteria isolates, Pediococcus pentosaceus, Leuconostoc mesenteroides and Weissella koreensis had the highest frequency of occurrence in both the sourdoughs. Lactobacillus sakei was the only lactobacillus isolated from the first to the last propagation day in Fi sourdough. According to microbiological and acidification properties, the maturity of the sourdoughs was reached after 5 days. The presence of hulls and the different microbial composition reflected on biochemical characteristics of Fi sourdoughs, including acidification and phenolic compounds. Moreover, proteolysis in Fi sourdough was more intense compared to Ita. The microbial dynamic of the faba bean sourdoughs showed some differences with the most studied cereal sourdoughs.
Sourdough-type propagation of faba bean flour. Dynamics of microbial consortia and biochemical implications / Coda, Rossana; Kianjam, Maryam; Pontonio, Erica; Verni, Michela; DI CAGNO, Raffaella; Katina, Kati; Rizzello, CARLO GIUSEPPE; Gobbetti, Marco. - In: INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY. - ISSN 0168-1605. - 248:(2017), pp. 10-21. [10.1016/j.ijfoodmicro.2017.02.009]
Sourdough-type propagation of faba bean flour. Dynamics of microbial consortia and biochemical implications
VERNI, MICHELA;RIZZELLO, CARLO GIUSEPPE
;
2017
Abstract
The microbial ecology of faba bean sourdoughs obtained from an Italian (Ita) and a Finnish (Fi) cultivar, belonging respectively to Vicia faba major and V. faba minor groups, was described by 16S rRNA gene pyrosequencing and culture-dependent analysis. The sourdoughs were propagated with traditional backslopping procedure throughout 14 days. Higher microbial diversity was found in the sourdough deriving from V. faba minor (Fi), still containing residual hulls after the milling procedure. After 2 days of propagation, the microbial profile of Ita sourdough was characterized by the dominance of the genera Pediococcus, Leuconostoc and Weissella, while the genera Lactococcus, Lactobacillus and Escherichia, as well as Enterobacteriaceae were present in Fi sourdoughs. Yeasts were in very low cell density until the second backslopping and were not anymore found after this time by plate count or pyrosequencing analysis. Among the lactic acid bacteria isolates, Pediococcus pentosaceus, Leuconostoc mesenteroides and Weissella koreensis had the highest frequency of occurrence in both the sourdoughs. Lactobacillus sakei was the only lactobacillus isolated from the first to the last propagation day in Fi sourdough. According to microbiological and acidification properties, the maturity of the sourdoughs was reached after 5 days. The presence of hulls and the different microbial composition reflected on biochemical characteristics of Fi sourdoughs, including acidification and phenolic compounds. Moreover, proteolysis in Fi sourdough was more intense compared to Ita. The microbial dynamic of the faba bean sourdoughs showed some differences with the most studied cereal sourdoughs.File | Dimensione | Formato | |
---|---|---|---|
Coda_Sourdough-type-propagation_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.