Pollution of aquatic ecosystems by plastic wastes poses severe environmental and health problems and has prompted scientific investigations on the fate and factors contributing to the modification of plastics in the marine environment. Here, we investigated, by means of microcosm studies, the role of hydrocarbon-degrading bacteria in the degradation of poly(ethylene terephthalate) (PET), the main constituents of plastic bottles, in the marine environment. To this aim, different bacterial consortia, previously acclimated to representative hydrocarbons fractions namely, tetradecane (aliphatic fraction), diesel (mixture of hydrocarbons), and naphthalene/phenantrene (aromatic fraction), were used as inocula of microcosm experiments, in order to identify peculiar specialization in poly(ethylene terephthalate) degradation. Upon formation of a mature biofilm on the surface of poly(ethylene terephthalate) films, the bacterial biodiversity and degradation efficiency of each selected consortium was analyzed. Notably, significant differences on biofilm biodiversity were observed with distinctive hydrocarbons-degraders being enriched on poly(ethylene terephthalate) surface, such as Alcanivorax, Hyphomonas, and Cycloclasticus species. Interestingly, ATR-FTIR analyses, supported by SEM and water contact angle measurements, revealed major alterations of the surface chemistry and morphology of PET films, mainly driven by the bacterial consortia enriched on tetradecane and diesel. Distinctive signatures of microbial activity were the alteration of the FTIR spectra as a consequence of PET chain scission through the hydrolysis of the ester bond, the increased sample hydrophobicity as well as the formation of small cracks and cavities on the surface of the film. In conclusion, our study demonstrates for the first time that hydrocarbons-degrading marine bacteria have the potential to degrade poly(ethylene terephthalate), although their degradative activity could potentially trigger the formation of harmful microplastics in the marine environment.

Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET) / Denaro, R.; Aulenta, F.; Crisafi, F.; Di Pippo, F.; Cruz Viggi, C.; Matturro, B.; Tomei, P.; Smedile, F.; Martinelli, A.; Di Lisio, V.; Venezia, C.; Rossetti, S.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 749:(2020), pp. 1-16. [10.1016/j.scitotenv.2020.141608]

Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET)

Aulenta F.
Writing – Original Draft Preparation
;
Cruz Viggi C.
Methodology
;
Tomei P.
Methodology
;
Martinelli A.
Writing – Review & Editing
;
Di Lisio V.
Investigation
;
2020

Abstract

Pollution of aquatic ecosystems by plastic wastes poses severe environmental and health problems and has prompted scientific investigations on the fate and factors contributing to the modification of plastics in the marine environment. Here, we investigated, by means of microcosm studies, the role of hydrocarbon-degrading bacteria in the degradation of poly(ethylene terephthalate) (PET), the main constituents of plastic bottles, in the marine environment. To this aim, different bacterial consortia, previously acclimated to representative hydrocarbons fractions namely, tetradecane (aliphatic fraction), diesel (mixture of hydrocarbons), and naphthalene/phenantrene (aromatic fraction), were used as inocula of microcosm experiments, in order to identify peculiar specialization in poly(ethylene terephthalate) degradation. Upon formation of a mature biofilm on the surface of poly(ethylene terephthalate) films, the bacterial biodiversity and degradation efficiency of each selected consortium was analyzed. Notably, significant differences on biofilm biodiversity were observed with distinctive hydrocarbons-degraders being enriched on poly(ethylene terephthalate) surface, such as Alcanivorax, Hyphomonas, and Cycloclasticus species. Interestingly, ATR-FTIR analyses, supported by SEM and water contact angle measurements, revealed major alterations of the surface chemistry and morphology of PET films, mainly driven by the bacterial consortia enriched on tetradecane and diesel. Distinctive signatures of microbial activity were the alteration of the FTIR spectra as a consequence of PET chain scission through the hydrolysis of the ester bond, the increased sample hydrophobicity as well as the formation of small cracks and cavities on the surface of the film. In conclusion, our study demonstrates for the first time that hydrocarbons-degrading marine bacteria have the potential to degrade poly(ethylene terephthalate), although their degradative activity could potentially trigger the formation of harmful microplastics in the marine environment.
2020
marine hydrocarbonoclastic bacteria; marine plastic pollution; poly(ethylene terephthalate) biodegradation
01 Pubblicazione su rivista::01a Articolo in rivista
Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET) / Denaro, R.; Aulenta, F.; Crisafi, F.; Di Pippo, F.; Cruz Viggi, C.; Matturro, B.; Tomei, P.; Smedile, F.; Martinelli, A.; Di Lisio, V.; Venezia, C.; Rossetti, S.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 749:(2020), pp. 1-16. [10.1016/j.scitotenv.2020.141608]
File allegati a questo prodotto
File Dimensione Formato  
Denaro_Marine_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.72 MB
Formato Adobe PDF
4.72 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1457265
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 46
social impact