This paper develops the notion and properties of the generalized principal eigenvalue for an elliptic system coupling an equation in a plane with one on a line in this plane, together with boundary conditions that express exchanges taking place between the plane and the line. This study is motivated by the reaction-diffusion model introduced by Berestycki, Roquejoffre and Rossi [The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol. 66(4-5) (2013) 743-766] to describe the effect on biological invasions of networks with fast diffusion imbedded in a field. Here we study the eigenvalue associated with heterogeneous generalizations of this model. In a forthcoming work [Influence of a line with fast diffusion on an ecological niche, preprint (2018)] we show that persistence or extinction of the associated nonlinear evolution equation is fully accounted for by this generalized eigenvalue. A key element in the proofs is a new Harnack inequality that we establish for these systems and which is of independent interest.
Generalized principal eigenvalues for heterogeneous road-field systems / Berestycki, H.; Ducasse, R.; Rossi, L.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 22:1(2020). [10.1142/S0219199719500135]
Generalized principal eigenvalues for heterogeneous road-field systems
Rossi L.
2020
Abstract
This paper develops the notion and properties of the generalized principal eigenvalue for an elliptic system coupling an equation in a plane with one on a line in this plane, together with boundary conditions that express exchanges taking place between the plane and the line. This study is motivated by the reaction-diffusion model introduced by Berestycki, Roquejoffre and Rossi [The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol. 66(4-5) (2013) 743-766] to describe the effect on biological invasions of networks with fast diffusion imbedded in a field. Here we study the eigenvalue associated with heterogeneous generalizations of this model. In a forthcoming work [Influence of a line with fast diffusion on an ecological niche, preprint (2018)] we show that persistence or extinction of the associated nonlinear evolution equation is fully accounted for by this generalized eigenvalue. A key element in the proofs is a new Harnack inequality that we establish for these systems and which is of independent interest.File | Dimensione | Formato | |
---|---|---|---|
Berestychi_preprint_Generalized-principal_2020.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
374.55 kB
Formato
Adobe PDF
|
374.55 kB | Adobe PDF | |
Berestychi_Generalized-principal_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
581.71 kB
Formato
Adobe PDF
|
581.71 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.