We present a semi-Lagrangian scheme for the approximation of a class of Hamilton--Jacobi--Bellman (HJB) equations on networks. The scheme is explicit, consistent, and stable for large time steps. We prove a convergence result and two error estimates. For an HJB equation with space-independent Hamiltonian, we obtain a first order error estimate. In the general case, we provide, under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical results are discussed and validated in a numerical tests section.
A semi-Lagrangian scheme for Hamilton--Jacobi--Bellman equations on networks / Carlini, E.; Festa, A.; Forcadel, N.. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 58:6(2020), pp. 3165-3196. [10.1137/19M1260931]
Titolo: | A semi-Lagrangian scheme for Hamilton--Jacobi--Bellman equations on networks | |
Autori: | ||
Data di pubblicazione: | 2020 | |
Rivista: | ||
Citazione: | A semi-Lagrangian scheme for Hamilton--Jacobi--Bellman equations on networks / Carlini, E.; Festa, A.; Forcadel, N.. - In: SIAM JOURNAL ON NUMERICAL ANALYSIS. - ISSN 0036-1429. - 58:6(2020), pp. 3165-3196. [10.1137/19M1260931] | |
Handle: | http://hdl.handle.net/11573/1454363 | |
Appartiene alla tipologia: | 01a Articolo in rivista |
File allegati a questo prodotto
File | Note | Tipologia | Licenza | |
---|---|---|---|---|
Carlini_SemiLagrangian_2020.pdf | Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione) | Tutti i diritti riservati (All rights reserved) | Administrator Richiedi una copia |