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A SEMI-LAGRANGIAN SCHEME FOR
HAMILTON--JACOBI--BELLMAN EQUATIONS ON NETWORKS\ast 

E. CARLINI\dagger , A. FESTA\ddagger , AND N. FORCADEL\S 

Abstract. We present a semi-Lagrangian scheme for the approximation of a class of Hamilton--
Jacobi--Bellman (HJB) equations on networks. The scheme is explicit, consistent, and stable for
large time steps. We prove a convergence result and two error estimates. For an HJB equation
with space-independent Hamiltonian, we obtain a first order error estimate. In the general case, we
provide, under a hyperbolic CFL condition, a convergence estimate of order one half. The theoretical
results are discussed and validated in a numerical tests section.
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1. Introduction. Interest in the study of linear and nonlinear partial differential
equations on networks has risen steadily in recent decades, motivated by the modeling
of various networked systems like roads, pipelines, and electronic and information
networks. In particular, an extensive literature has been developed for vehicular
traffic systems modeled through conservation laws. Existence results can be found in
[19], and some partial uniqueness results (for a limited number of intersecting roads)
in [18, 2]. In many cases, the lack of uniqueness on the junction points obliges one
to add some special conditions, which may be ambiguous or difficult to derive. More
recently, models based on Hamilton--Jacobi (HJ) equations have been proposed. In
these models, the density of the cars is obtained as the derivative of the solution of the
HJ equation (see [25]). The main advantage of this framework is the ability to include
an optimality principle in the model, solving some of the ambiguities in the junction
points without the introduction of additional conditions. However, the relationship
between the two approaches is still under investigation.

The theory of HJ equations on networks is very recent. In general, these equations
do not have regular solutions, and the notion of weak solution (viscosity solution)
needs to be extended on the junction points. So far several proposals have been
made. The early attempts are contained in the works [1, 7, 21, 22, 27], where the
authors introduce new definitions of weak solutions and prove the well-posedness of
the problem. We highlight the paper [10], where the authors discuss the differences
among the models. We also refer the reader to the most recent works [5, 24] for
simplified proofs of uniqueness.
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Regarding the numerical approximation, there are very few schemes, and only
some of them are supported by theoretical results. Let us mention the finite differences
scheme proposed in [7, 11] and the paper [20] in which some error estimates are proved.

In this paper, we adopt the framework and the notion of weak solution as intro-
duced in [21]. This framework has the advantage of including very general models.
Here, the Hamiltonian is convex with respect to the gradient variable. At the junc-
tion, it can be discontinuous with respect to the space variable and may depend on a
flux limiter.

We propose a semi-Lagrangian scheme for this kind of equation by discretizing
the dynamic programming principle presented in [21]. The scheme generalizes that
introduced in [8] and enables discrete characteristics to cross the junctions. This
property makes the scheme unconditionally stable, allowing for large time steps. This
is the main advantage compared to finite differences and finite element schemes. With
almost standard techniques, it is possible to prove consistency and monotonicity,
which imply the convergence of the scheme.

We prove two convergence error estimates: for state-independent Hamiltonians,
where optimal controls are constant in time, and for more general Hamiltonians.
In the first case, we obtain a first order convergence estimate depending only on
the space step. In the second case, we prove a general convergence result and, in
the case of Courant number less than one, an error estimate which, for constant
Courant number, gives order of convergence 1/2. The proof is obtained applying
some techniques derived from papers on regional optimal control problems [4, 5], and
it improves the results presented in [20] in the case of finite differences schemes.

For the sake of clarity, we consider a simplified network (a junction), but the
result can be extended to more general networks, with more than one junction, as we
show in the last numerical test.

Structure of the paper. In section 2 we recall some basic notions for junctions
and build the optimal control problem on these domains. In section 3, we derive the
scheme and prove its basic properties: consistency, monotonicity, and regularity. In
section 4, we present the main results concerning convergence and error estimates.
Finally, in section 5, we show some numerical simulations.

2. An optimal control problem on networks. A network is a domain com-
posed of a finite number of nodes connected by a finite number of edges. To simplify
the description of such a system we focus on the case of a junction, which is a network
composed of one node and a finite number of edges. We follow [21] and the notation
therein to describe the problem.

Given a positive number N , a junction J \in \BbbR 2 is a network of N half-lines
Ji := \{ k ei, k \in \BbbR +\} (where each line is isometric to [0,+\infty ) and ei is a unitary vector
centered at the origin) connected at a junction point that we conventionally place at
the origin (see Figure 1). We then have

J :=
\bigcup 

i=1,...,N

Ji, Ji \cap Jj = \{ 0\} \forall i \not = j, i, j \in \{ 1, . . . , N\} .

We consider the geodesic distance function on J given by

d(x, y) =

\biggl\{ 
| x - y| if x, y \in Ji for one i \in \{ 1, . . . , N\} ,
| x| + | y| otherwise.

For a real-valued function u defined on J , \partial iu(x) denotes the (spatial) derivative of u

D
ow

nl
oa

de
d 

11
/1

0/
20

 to
 1

51
.1

00
.1

01
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A SEMI-LAGRANGIAN SCHEME FOR HJB ON NETWORKS 3167

J1 J2

J3

J4

J5

e1

e3

e2

e4

e5
0

Fig. 1. Junction with N = 5 edges.

at x \in Ji and the gradient of u is defined as

(1) ux :=

\biggl\{ 
\partial iu(x) if x \in J\ast 

i := Ji \setminus \{ 0\} ,
(\partial 1u(x), \partial 2u(x), . . . , \partial Nu(x)) if x = 0.

We describe a finite-horizon optimal control problem on the network J . For a more
extensive description of the problem, see [21].

Let us define the set of admissible dynamics on the network J connecting point
(s, y) to point (t, x) as

(2) \Gamma t,x
s,y :=

\left\{ 
 
 

(X(\cdot ), \alpha (\cdot )) \in Lip([s, t]; J)\times L\infty ([s, t];\BbbR N+1),
\.X(\tau ) = U(X(\tau ), \alpha (\tau )), \tau \in [s, t],
X(s) = y, X(t) = x,

where for any (t, x) \in [0, T ]\times J and \alpha = (\alpha 0, \alpha 1, . . . , \alpha N ) \in \BbbR N+1 ,

U(x, \alpha ) =

\biggl\{ 
\alpha i if x \in J\ast 

i ,
\alpha 0 if x = 0.

We define the cost function,

L(x, \alpha ) :=

\biggl\{ 
Li(x, \alpha i) if x \in Ji,
L0(\alpha 0) if x = 0,

where the functions Li : \BbbR + \times \BbbR \rightarrow \BbbR for i = 1, . . . , N satisfy the following:
(A1) Li are strictly convex (with respect to the second argument) and uniformly

Lipschitz continuous.
(A2) Li are strongly coercive with respect to the second argument uniformly in x

(Li(x, \alpha i)/| \alpha i| \rightarrow +\infty for | \alpha i| \rightarrow +\infty uniformly in x \in \BbbR +).
(A3) For all \mu > 0 there exists C\mu > 0 such that

sup
x\in Ji

\bigm| \bigm| \bigm| \bigm| inf
\alpha i\in [ - \mu ,\mu ]

Li(x, \alpha i)

\bigm| \bigm| \bigm| \bigm| \leq C\mu .

In addition, L0 : \BbbR \rightarrow \BbbR is defined as

L0(\alpha 0) :=

\biggl\{ 
\=L0 if \alpha 0 = 0,
+\infty otherwise

for a given \=L0 \in \BbbR . The value function of the optimal control problem is

(3) u(t, x) = inf
y\in J

inf
(X(\cdot ),\alpha (\cdot ))\in \Gamma t,x

0,y

\biggl\{ 
u0(y) +

\int t

0

L(X(\tau ), \alpha (\tau ))d\tau 

\biggr\} 
.
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Remark. We stress the generality of the model in treating the junction: an optimal
trajectory chosen in (2) is evaluated by the functional (3) where the cost does not have
any regularity passing through the junction. The trajectories have also the possibility
of waiting in the junction, paying a specific constant cost L0 per time unity.

It has been proved in [21] that the following dynamic programming principle holds.

Proposition 2.1 (dynamic programming principle). For all x \in J , t \in (0, T ],
s \in [0, t), the value function u defined in (3) satisfies

(4) u(t, x) = inf
y\in J

inf
(X(\cdot ),\alpha (\cdot ))\in \Gamma t,x

s,y

\biggl\{ 
u(s,X(s)) +

\int t

s

L(X(\tau ), \alpha (\tau ))d\tau 

\biggr\} 
.

A direct approximation of the dynamic programming principle (4) is the basis for
the scheme which we describe in the next section.

The following theorem characterizes the value function (3) as the solution of a
Hamilton--Jacobi--Bellman (HJB) equation (for the definition of viscosity solution and
the proof, see Appendix A and [21]).

Theorem 2.2 (HJB equation satisfied by the value function u). Given a function
u0, globally Lipschitz continuous on J , the value function u defined in (3) is the unique
viscosity solution of

(5)

\biggl\{ 
\partial tu(t, x) +Hi(x, ux(t, x)) = 0 in (0, T )\times J\ast 

i ,
\partial tu(t, x) + FA(ux(t, x)) = 0 in (0, T )\times \{ 0\} ,

with initial condition u(0, x) = u0(x) for x \in J, where

Hi(x, p) := sup
\alpha i\in \BbbR 

\{ \alpha i p - Li(x, \alpha i)\} ,

with \^pi(x) chosen such that Hi is nonincreasing in ( - \infty , \^pi(x)] and nondecreasing in
[\^pi(x),\infty ). The operator FA : \BbbR N \rightarrow \BbbR on the junction point is

(6) FA(p) := max

\biggl( 
A, max

i=1,...,N
H - 

i (0, pi)

\biggr) 
, with A =  - \=L0,

where

H - 
i (x, p) :=

\biggl\{ 
Hi(x, p) for p \leq \^pi(x),
Hi(x, \^pi) for p > \^pi(x).

Remark. In the vehicular traffic flow models, the function H - can be related,
with suitable transformations, to the demand and supply functions, introduced in
[23]. This relation was observed in [22]. In this setting, the constant A is known as
the flux limiter at the junction. In fact, the lower the cost at the junction \=L0, the
longer the vehicles will stay at the junction, and so the bigger the flux limiter.

We now gives some useful results on the Hamiltonian H.

Proposition 2.3 (properties on H). Under assumptions (A1)--(A3), the follow-
ing assertions hold true:

(i) For every x \in \BbbR + \cup \{ +\infty \} and bounded p, \alpha i \in arg sup\alpha i\in \BbbR \{ \alpha ip - Li(x, \alpha i)\} 
is bounded.
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(ii) The nonincreasing part of Hi(x, p) with respect to pi is given by

H - 
i (x, pi) = sup

\alpha i\leq 0
\{ \alpha ipi  - Li(x, \alpha i)\} .

(iii) (Regularity.) For all M > 0 there exists a modulus of continuity \omega M such
that for all | p| , | q| \leq M and x \in Ji

| Hi(x, p) - Hi(x, q)| \leq \omega M (| p - q| );

in addition, Hi(\cdot , p) is Lipschitz continuous with respect to the space variable.
(iv) (Uniform coercivity.) Hi(x, p) \rightarrow +\infty for | p| \rightarrow +\infty uniformly for every

x \in Ji \cup \{ +\infty \} , i = 1, . . . , N .
(v) (Convexity.) p \mapsto \rightarrow Hi(x, p) is convex for every x \in J .
(vi) (Uniform bound of the Hamiltonian for bounded gradient.) For all M > 0,

there exists CM > 0 such that

sup
p\in [ - M,M ], x\in J\ast 

| H(x, p)| \leq CM ,

where J\ast := J \setminus \{ 0\} .
Remark. The previous proposition implies in particular the well-posedness of (5)

(see [21]).

Proof. From assumptions (A1)--(A2), \alpha ip  - Li(x, \alpha i) is a continuous function
(negatively) coercive; therefore there exists a compact interval [ - \mu , \mu ], \mu \in \BbbR , such
that

sup
\alpha i\in \BbbR 

\{ \alpha i p - Li(x, \alpha i)\} = sup
\alpha i\in [ - \mu ,\mu ]

\{ \alpha i p - Li(x, \alpha i)\} .

Since p is bounded, (i) holds. Assertion (ii) follows from Lemma 6.2 in [21].
From (i), we have

Hi(x, p) - Hi(x, q) \leq \=\alpha | p - q| ,
where \=\alpha is the minimizer in Hi(x, q). Exchanging the role of p, q, we get (iii).

Taking \alpha = 1 in the Hamiltonian, we have

Hi(x, p) \geq p - Li(x, 1).

The same argument for \alpha =  - 1 gives Hi(x, p) \rightarrow +\infty for | p| \rightarrow +\infty ; then (iv) holds.
Finally (v) holds since Hi is the upper envelope of convex functions, and (vi) follows
directly from assumption (A3).

We now give regularity results for the value functions.

Proposition 2.4 (regularity of the value function). Under assumptions (A1)--
(A2), the value function u defined in (3) is Lipschitz continuous in space and time.

Proof. First, we remark that for C \geq C0, with C0 defined as in (vi) of Proposition
2.3 with L = 0 , u0(x) \pm Ct are, respectively, the subsolution and supersolution of
(5). Using the comparison principle, we deduce that

u0(x) - Ct \leq u(t, x) \leq u0(x) + Ct.

Let h \geq 0 and define uh(t, x) = u(t+h, x) - Ch. The previous inequalities imply that

uh(0, x) = u(h, x) - Ch \leq u(0, x).
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The equation is invariant by translation in time and by the addition of a constant
(which implies that uh is a subsolution of (5)); we then get by the comparison principle
that

uh(t, x) \leq u(t, x).

This implies that
u(t+ h, x) - u(t, x)

h
\leq C.

The reverse inequality can be proved in the same way (using that u(t+ h, x) +Ch is
a supersolution), so we deduce that

| ut| \leq C,

since h can be chosen arbitrarily small. Hence u is Lipschitz continuous in time. We
know that u is a viscosity solution of (5), and therefore it satisfies in particular (in
the viscosity sense) for each i \in \{ 1, . . . , N\} 

Hi(x, ux) \leq C on (0, T )\times J\ast 
i .

Using the coercivity of H, this implies the existence of a constant \~C such that (in the
viscosity sense)

| ux| \leq \~C on (0, T )\times J\ast 
i .

Therefore, u is Lipschitz continuous also with respect to the space variable.

Remark. Note that in the classical setting (i.e., without junction), this type of
result can be obtained more directly using the definition of the value function and
the dynamic programming principle (obtaining first regularity in space and then in
time). But the arguments used in this setting rely on the Lipschitz continuity of the
coset L, which is no longer true at the junction. This is the reason why, in this proof,
we have to use viscosity techniques.

3. A semi-Lagrangian scheme for the approximation of the solution.
Let us introduce a uniform discretization of the network (0, T ) \times J . The choice of
a uniform discretization is not restrictive, and the scheme can be easily extended to
nonuniform grids. Given \Delta t and \Delta x in \BbbR +, we define \Delta = (\Delta x,\Delta t), NT = \lfloor T/\Delta t\rfloor 
(\lfloor \cdot \rfloor is the integer part), and

\scrG \Delta := \{ tn : n = 0, . . . , NT \} \times J\Delta x,

where J\Delta x :=
\bigcup 

i=1,...,N J\Delta x
i , J\Delta x

i = \{ k\Delta x ei : k \in \BbbN \} . We define tn = n\Delta t for
n = 0, . . . , NT and derive a discrete version of the dynamic programming princi-
ple (5) defined on the grid \scrG \Delta . To do so, as usual in first order semi-Lagrangian

schemes, we discretize the trajectories in \Gamma 
tn+1,x
tn,y by one step of the Euler scheme.

For i \in \{ 1, . . . , N\} , let x \in Ji and let \alpha \in \BbbR N+1 be such that \alpha i\Delta t \leq | x| ; then the
approximated trajectory gets

x \simeq y + \alpha i\Delta t.

In this case, the discrete backward trajectory x  - \Delta t\alpha i remains on Ji and, applying
a quadrature formula, a discrete version of (4) at the point (tn+1, x) is

u(tn+1, x) \simeq u(tn, x - \alpha i\Delta tei) + \Delta tLi(x, \alpha i).

Instead, if \alpha i\Delta t > | x| , the discrete trajectory reaches the junction at a time included

in the interval [0,\Delta t]. Denoting by s0 \in [0,\Delta t - | x| 
\alpha i

] the time spent by the trajectory at
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the junction point, Jj the arc from which the trajectory comes, and \^t :=
\bigl( 
\Delta t - s0 - | x| 

\alpha i

\bigr) 

the remaining time on a new arc Jj , the approximation of (4) at the point (tn+1, x)
becomes

u(tn+1, x) \simeq u
\bigl( 
tn, - \alpha j\^tej

\bigr) 
+ \^t Lj(0, \alpha j) + s0L0(\alpha 0) +

| x| 
\alpha i
Li(x, \alpha i).

We denote by B(J\Delta x) and B(\scrG \Delta ) the spaces of bounded functions defined, respec-
tively, on J\Delta x and on \scrG \Delta . We approximate the value function on the feet of the
discrete trajectories, which in general are not grid nodes, by a standard piecewise
linear Lagrange interpolation \BbbI [\^u](z), where \^u \in B(J\Delta x) and z \in Jj , i.e.,

\BbbI [\^u](z) := \^u(i\Delta xej) + (z  - i\Delta xej)
\^u((i+ 1)\Delta xej) - \^u(i\Delta xej)

\Delta xej

for z \in [i\Delta xej , (i+ 1)\Delta xej).
Finally, we define a fully discrete numerical operator S : B(\scrG \Delta )\times J\Delta x \rightarrow \BbbR as, if

x \in Ji,

S[\^v](x) := min

\left\{ 
     
     

min
\alpha i<

| x| 
\Delta t

\BbbI [\^v](x - \alpha i\Delta tei) + \Delta tLi(x, \alpha i),

min
\alpha i\geq | x| 

\Delta t

min
s0\in [0,\Delta t - | x| 

\alpha i
]

min
j,\alpha j\leq 0

\Bigl\{ 
\BbbI [\^v]

\Bigl( 
 - 
\Bigl( 
\Delta t - s0  - | x| 

\alpha i

\Bigr) 
\alpha jej

\Bigr) 

+
\Bigl( 
\Delta t - s0  - | x| 

\alpha i

\Bigr) 
Lj(0, \alpha j) + s0L0(\alpha 0) +

| x| 
\alpha i
Li(x, \alpha i)

\Bigr\} 

and, if x = 0,

S[\^v](x) := min
j,\alpha j\leq 0

min
s0\in [0,\Delta t]

\{ \BbbI [\^v] ( - (\Delta t - s0)\alpha jej) + (\Delta t - s0)Lj(0, \alpha j) + s0L0(\alpha 0)\} .

Then the discrete solution w \in B(\scrG \Delta ) solves

(7) w(tn+1, x) = S[ \^wn](x), n = 0, . . . , NT  - 1, x \in J\Delta x,

where \^wn := \{ w(tn, x)\} x\in J\Delta x for n = 0, . . . , NT  - 1 and \^w0 = \{ u0(x)\} x\in J\Delta x .

3.1. Basic properties of the scheme. We prove some basic properties of (7).

Proposition 3.1 (monotonicity and stability of the scheme). We assume that
(A1)--(A3) hold. Then the numerical scheme (7) is

(i) monotone, i.e., given two discrete functions v1, v2 \in B(J\Delta x) such that v1 \leq v2
we have

S[\^v1](x) \leq S[\^v2](x) \forall x \in J\Delta x;

(ii) invariant by addition of constants, i.e., S[ \^\varphi + C](z) = S[ \^\varphi ](z) + C for any
constant C;

(iii) stable, i.e., there exists a positive constant K such that for any (tn, x) \in \scrG \Delta 

| w(tn, x) - u0(x)| \leq Ktn.

Proof. To prove monotonicity, let us fix an x \in J\Delta x
i . We focus on the difficulty

due to the junction. More precisely, we assume that the trajectory related to v1 passes
through the junction and the one related to v2 does not. The other cases are easier
and can be treated in a similar way. Let us denote by (\=\alpha i, \=s0, \=j, \=\alpha \=j , \=\alpha 0) the optimal
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strategy contained in v1, and let us denote by \^\alpha i the optimal control of v2. The
optimal controls are bounded by Proposition 2.3. We have

S[\^v1](x) = \BbbI [\^v1]
\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| x| 
\=\alpha i

\biggr) 
\=\alpha \=je\=j

\biggr) 
+

\biggl( 
\Delta t - \=s0  - 

| x| 
\=\alpha i

\biggr) 
Lj(0, \=\alpha \=j)

+ \=s0L0(\=\alpha 0) +
| x| 
\alpha i
Li(x, \^\alpha i) \leq \BbbI [\^v1](x - \^\alpha i\Delta tei) + \Delta tLi(x, \^\alpha i) = S[\^v2](x),

which proves the monotonicity.
Point (ii) is a straightforward verification. The stability property (iii) follows

directly from (i) and (ii) withK \geq supx\in J\Delta x
| S[\^u0](x) - u0(x)| 

\Delta t . For the proof, see [12].

We now give a regularity result for the solution of the scheme. This is the discrete
analogue of the Lipschitz estimate in the space of the value function and will be used
in the proof of the error estimate.

Proposition 3.2 (almost Lipschitz Regularity in the space of w). Let w(tn, x) be
a solution of (7). If u0 is uniformly Lipschitz continuous, then for x, y \in J\Delta x there
exists a C > 0 such that

| w(tn, x) - w(tn, y)| \leq C (\Delta t+ d(x, y)), n = 0, . . . , Nt.

The proof is postponed to Appendix B.

Remark (bounded control). By Proposition 3.1(iii) the w solution of (7) is bound-
ed and then the discrete problem (7) is well-posed. We observe also that the same
argument of Proposition 2.3 (based on (A2)) can be used to prove that the control \alpha 
in (7) is bounded. We define

(8) \mu = sup
(x,t)\in J\times (0,T ]

max
i=1,...,N

| \alpha \ast 
i | ,

the maximal absolute value of the optimal control.

3.2. Consistency of the scheme. We now focus on the study of the consistency
properties of the scheme. First of all, we recall the definition of consistency (the class
of test functions C2(J) is defined in Appendix A).

Definition 3.3 (consistency). Let x \in J and (\Delta xm,\Delta tm) \rightarrow 0 as m \rightarrow \infty . Let
ym \in J\Delta xm be a sequence of grid points such that ym \rightarrow x as m\rightarrow \infty . The scheme S
is said to be consistent with (5) if the following properties hold:

(i) If x \in Ji, for all test functions \varphi \in C2(J), we have

(9)
\varphi (ym) - S[ \^\varphi ](ym)

\Delta tm
\rightarrow Hi(x, \varphi x(x)) as m\rightarrow \infty .

(ii) If x = 0, for all test functions \varphi \in C2(J) such that \partial i\varphi (0) = pL0
i for i =

1, . . . , N , where pL0
i \in \BbbR are such that Hi(0, p

L0
i ) = H+

i (0, pL0
i ) =  - L0 and

H+
i (x, p) := sup\alpha i\geq 0(\alpha ip - Li(x, \alpha )), we have

(10)
\varphi (ym) - S[ \^\varphi ](ym)

\Delta tm
\rightarrow F - L0

(\varphi x(x)) =  - L0 as m\rightarrow \infty .

Definition 3.4 (consistency estimate). Let x \in J\Delta x and \Delta x,\Delta t > 0. We say
that the scheme S satisfies a consistency estimate \scrE (\Delta x,\Delta t) > 0 if for all test func-
tions \varphi \in C2(J) with bounded second order derivatives, the following hold:
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(i) If x \in J\Delta x
i \setminus \{ 0\} , we have

(11)

\bigm| \bigm| \bigm| \bigm| 
\varphi (x) - S[ \^\varphi ](x)

\Delta t
 - Hi(x, \varphi x(x))

\bigm| \bigm| \bigm| \bigm| \leq \| \varphi xx\| \infty \scrE (\Delta x,\Delta t).

(ii) If x = 0, we have

(12)

\bigm| \bigm| \bigm| \bigm| 
\varphi (x) - S[ \^\varphi ](x)

\Delta t
 - F - L0

(\varphi x(x))

\bigm| \bigm| \bigm| \bigm| \leq \| \varphi xx\| \infty \scrE (\Delta x,\Delta t).

Remark. Let us remark that, due to the particular form of the test function in
(10), if the scheme admits a consistency estimate \scrE (\Delta x,\Delta t) \rightarrow 0, then the scheme
is consistent in the sense of Definition 3.3. Indeed, if ym \rightarrow 0 as m \rightarrow +\infty , with
ym \in J\ast 

i and \varphi \in C2(J) with \partial i\varphi (0) = pL0
i , then the consistency estimate implies

\varphi (ym) - S[ \^\varphi ](ym)

\Delta tm
\rightarrow Hi(0, \varphi x(0)) = Hi(0, p

L0
i ) =  - L0.

We begin to prove some consistency estimates for the numerical operators.

Proposition 3.5. Given \Delta t > 0 and \Delta x > 0, let us assume the CFL condition

(13) \mu 
\Delta t

\Delta x
\leq 1 (with \mu as in (8)).

Then for any \varphi \in C2(J) the following estimates hold for (7):
(i) If x \in J\Delta x

i \setminus \{ 0\} , then
\bigm| \bigm| \bigm| \bigm| 
\varphi (x) - S[ \^\varphi ](x)

\Delta t
 - Hi(x, \varphi x(x))

\bigm| \bigm| \bigm| \bigm| \leq K\| \varphi xx\| \infty 
\biggl( 
\Delta t+min

\biggl( 
\Delta x,

\Delta x2

\Delta t

\biggr) \biggr) 
;

(ii) if x = 0,

\bigm| \bigm| \bigm| \bigm| 
\varphi (x) - S[ \^\varphi ](x)

\Delta t
 - F - L0

(\varphi x(x))

\bigm| \bigm| \bigm| \bigm| \leq K\| \varphi xx\| \infty 
\biggl( 
\Delta t+min

\biggl( 
\Delta x,

\Delta x2

\Delta t

\biggr) \biggr) 
,

where K is a positive constant.

Remark (small Courant number). In the case when very small Courant numbers
are considered, \mu \Delta t

\Delta x \leq \Delta x, the estimates in Proposition 3.5 ensure consistency error

of order 1. These estimates improve the classical estimate \Delta x2

\Delta t + \Delta t for first order
semi-Lagrangian scheme and were first proved in [14].

Proof. (i) Let x \in J\Delta x
i \setminus \{ 0\} . We remark that condition (13) implies in particular

that the scheme reads

S[ \^\varphi ](x) = min
\alpha i<

| x| 
\Delta t

\BbbI [ \^\varphi ](x - \Delta t\alpha iei)+\Delta tLi(x, \alpha i) = min
\alpha i\in \BbbR 

\BbbI [ \^\varphi ](x - \Delta t\alpha iei)+\Delta tLi(x, \alpha i).

By using recent estimates proved in [14, 15], we have

(14) \BbbI [ \^\varphi ](x - \Delta t\alpha iei) = \varphi (x - \Delta t\alpha iei) +K\| \varphi xx\| \infty min(\Delta x2,\Delta t\Delta x).

Then by standard Taylor expansion we get the result.
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(ii) Let x = 0. In this case

S[ \^\varphi ](0) = min
s0\in [0,\Delta t]

min
j,\alpha j\leq 0

\{ \BbbI [ \^\varphi ]( - (\Delta t - s0)\alpha jej) + (\Delta t - s0)Lj(0, \alpha j) + s0L0(\alpha 0)\} .

Let us define K\Delta t := s0
\Delta t ; since s0 \in [0,\Delta t] we have K\Delta t \in [0, 1]. Again by Taylor

expansion, by Proposition 2.3, and by the interpolation error (14), we have

max
\varphi (0) - S[ \^\varphi ](0)

\Delta t
+K\| \varphi xx\| \infty 

\biggl( 
\Delta t+min

\biggl( 
\Delta x,

\Delta x2

\Delta t

\biggr) \biggr) 

=  - min
K\Delta t\in [0,1]

min
j,\alpha j\leq 0

( - (1 - K\Delta t)\alpha j\partial j\varphi (0) + (1 - K\Delta t)Lj(0, \alpha j) +K\Delta tL0(\alpha 0))

=  - min
K\Delta t\in [0,1]

\biggl[ 
(1 - K\Delta t) min

j,\alpha j\leq 0
( - \alpha j\partial j\varphi (0) + Lj(0, \alpha j)) +K\Delta t min

\alpha 0

(L0(\alpha 0))

\biggr] 

= max
K\Delta t\in [0,1]

\biggl[ 
(1 - K\Delta t) max

j,\alpha j\leq 0
(\alpha j\partial j\varphi (0) - Lj(0, \alpha j)) +K\Delta t max

\alpha 0

( - L0(\alpha 0))

\biggr] 

= max
K\Delta t\in [0,1]

\biggl\{ 
(1 - K\Delta t)max

j
H - 

j (0, \partial j\varphi (0)) - K\Delta tL0

\biggr\} 

= max

\biggl( 
max

j
H - 

j (0, \partial j\varphi (0)), - L0

\biggr) 
.

This ends the proof of the proposition.

The case that we study behaves differently from classic semi-Lagrangian schemes,
where the consistency error estimate is not limited by a CFL condition. This difference
is due to the presence of discontinuities on the Hamiltonians at the junction point.

It is worthwhile to underline that consistency (in the sense of Definition 3.3)
holds even without (13), and consequently the scheme is convergent without any CFL
condition, as we show at the beginning of section 4.

Proposition 3.6 (consistency of the scheme). Assume min(\Delta x2

\Delta t ,\Delta x) \rightarrow 0. Then
the scheme (7) is consistent according to Definition 3.3.

Proof. Let us consider a sequence ym such that ym \rightarrow x as \Delta m = (\Delta xm,\Delta tm) \rightarrow 
(0, 0). For notational convenience we drop the index m of the sequence of grid points.
In case the limit point x is not on the junction since x is fixed for every sequence
(\Delta x,\Delta t) \rightarrow (0, 0), y eventually verifies | y| > \mu \Delta t independently from the rate \Delta t/\Delta x.
Then the consistency follows as Case 1 in the proof of Proposition 3.5 (without the
condition \Delta t/\Delta x \leq 1/\mu ).

The situation is more complex when the limit point x is 0. If y \equiv 0, this case is
equivalent to Case 2 in the proof of Proposition 3.5. If y is such that y \rightarrow 0 and y \not = 0,
up to a subsequence, we can assume that y \in Ji for some i independent of m. In that
case, the optimal trajectory can cross the junction in one time step. Let \varphi \in C2(J)
such that \partial i\varphi (0) = pAi for i = 1, . . . , N , and let us define the two quantities:

\scrI 1 := min
\alpha i<

| y| 
\Delta t

(\BbbI [ \^\varphi ](y  - \Delta t\alpha iei) + \Delta tLi(y, \alpha i)),

\scrI 2 := min
\alpha ,\alpha i\geq | y| 

\Delta t

min
s0\in [0,\Delta t - | y| 

\alpha i
]

min
j,\alpha j\leq 0

\biggl\{ 
\BbbI [ \^\varphi ]

\biggl( 
 - 
\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
\alpha jej

\biggr) 

+

\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
Lj(0, \alpha j) + s0L0(\alpha 0) +

| y| 
\alpha i
Li(y, \alpha i)

\biggr\} 
.
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We remark that S[\varphi ](y) = min(\scrI 1, \scrI 2). We begin with the term \scrI 1. Evaluating the
interpolation error and using a Taylor expansion, we get
(15)
\scrI 1 = min

\alpha i\leq | y| 
\Delta t

\{ \varphi (y) - \alpha i\Delta t\partial i\varphi (y) + \Delta tLi(y, \alpha i)\} +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 

= \varphi (y) - \Delta t max
\alpha i\leq | y| 

\Delta t

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
.

Using the inequality

max
\alpha i\leq | y| 

\Delta t

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} \leq max
\alpha i\in \BbbR 

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} 

= Hi(y, \partial i\varphi (y)) =  - L0 + o(1),

we deduce that

(16) \scrI 1 \geq \varphi (y) - \Delta tA+\Delta t o(1) +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
.

For the term \scrI 2, we add into the argument of \varphi the term y  - | y| 
\alpha i
\alpha iei = 0. Using the

Taylor expansion twice and the interpolation accuracy, we obtain

\BbbI [\varphi ]
\biggl( 
 - 
\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
\alpha jej

\biggr) 
= \varphi (y) - | y| 

\alpha i
\alpha i\partial i\varphi (y) - 

\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
\alpha j\partial j\varphi (0)

+K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
.

The equation above implies

\scrI 2 +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 

= min
\alpha i\geq | y| 

\Delta t

min
s0\in [0,\Delta t - | y| 

\alpha i
]

\biggl\{ 
min
j

min
\alpha j\leq 0

\biggl\{ 
 - 
\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
(\alpha j\partial j\varphi (0) - Lj(0, \alpha j))

\biggr\} 

+ \varphi (y) - | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i)) + s0L0(\alpha 0)

\biggr\} 

= \varphi (y) + min
\alpha i\geq | y| 

\Delta t

min
s0\in [0,\Delta t - | y| 

\alpha i
]

\biggl\{ 
 - | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i)) + s0L0(\alpha 0)

 - 
\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
max

j
max
\alpha j\leq 0

\{ (\alpha j\partial j\varphi (0) - Lj(0, \alpha j))\} 
\biggr\} 

= \varphi (y) + min
\alpha i\geq | y| 

\Delta t

min
s0\in [0,\Delta t - | y| 

\alpha i
]

\biggl\{ 
 - | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i)) + s0L0(\alpha 0)

 - 
\biggl( 
\Delta t - s0  - 

| y| 
\alpha i

\biggr) 
max

j
H - 

j (0, \partial j\varphi (0))

\biggr\} 
.

Using maxj H
 - 
j (0, \partial j\varphi (0)) = maxj minpHj(0, p) =: \=H0 and L0(\alpha 0) = L0, we deduce
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that (we use \=H0 \leq  - L0)

\scrI 2 +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 

= \varphi (y) + min
\alpha i\geq | y| 

\Delta t

\biggl\{ 
 - | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i))

+ min
s0\in [0,\Delta t - | y| 

\alpha i
]

\biggl\{ 
s0( \=H

0 + L0) - 
\biggl( 
\Delta t - | y| 

\alpha i

\biggr) 
\=H0

\biggr\} \biggr\} 

= \varphi (y) + min
\alpha i\geq | y| 

\Delta t

\biggl\{ 
 - | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i)) +

\biggl( 
\Delta t - | y| 

\alpha i

\biggr) 
L0

\biggr\} 
(17)

= \Delta t L0 + \varphi (y) - max
\alpha i\geq | y| 

\Delta t

\biggl\{ | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i) + L0)

\biggr\} 
.

We use | y| 
\alpha i

\leq \Delta t in the last sup, and we observe that \alpha i\partial i\varphi (y) - Li(y, \alpha i)+L0 \leq o(1)
getting

(18) \scrI 2 +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
\geq +\Delta t L0 + \varphi (y) + \Delta to(1).

Finally, via (16) and (18), we obtain

(19) S[\varphi ](y) = min(\scrI 1, \scrI 2)
\geq +\Delta tL0 + \varphi (y) + \Delta to(1) +K\| \varphi xx\| \infty 

\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
.

Now, we need to show that this inequality is in fact an equality. We denote by \=\alpha i the
solution of

max
\alpha i\in \BbbR 

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} 

and distinguish two cases. First, we consider the case \=\alpha i \leq | y| 
\Delta t . This implies in

particular that

max
\alpha i\leq | y| 

\Delta t

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} = max
\alpha i\in \BbbR 

\{ \alpha i\partial i\varphi (y) - Li(y, \alpha i)\} 

= Hi(y, \partial i\varphi (y)) =  - L0 + o(1).

Using (15), we deduce that

\scrI 1 = \Delta tL0 + \varphi (y) + \Delta to(1) +K\| \varphi xx\| \infty 
\bigl( 
min(\Delta x2,\Delta t\Delta x) + \Delta t2

\bigr) 
,

and so (19) is an equality.

We now consider the case \=\alpha i \geq | y| 
\Delta t . We define

\=\scrI 2 := max
\alpha i\geq | y| 

\Delta t

\biggl\{ | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i) + L0)

\biggr\} 
.

Clearly, 0 \leq | y| 
\alpha i

\leq \Delta t and \alpha i\partial i\varphi (y) - Li(y, \alpha i) + L0 \leq o(1); therefore we can say

\Delta t o(1) \geq \=\scrI 2 \geq \Delta t

\Biggl\{ 
max
\alpha i\geq | y| 

\Delta t

\biggl\{ | y| 
\alpha i

(\alpha i\partial i\varphi (y) - Li(y, \alpha i)

\biggr\} 
+ L0

\Biggr\} 

= \Delta t(Hi(y, \partial i\varphi (y)) + L0) = \Delta t o(1).

This implies again that (19) is an equality and completes the proof.
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4. Convergence and convergence estimates. In this section, we introduce
the main results of the paper. First of all, the convergence of the scheme can be
proven with a standard argument based on the monotonicity.

Theorem 4.1 (convergence). Assume that min(\Delta x2/\Delta t,\Delta x) \rightarrow 0, and let T > 0
and let u0 be a Lipschitz continuous function on J . Then the numerical solution w
of (7) converges uniformly on any compact set \scrK of (0, T ) \times J as \Delta \rightarrow (0, 0) to the
unique viscosity solution u of (5), i.e.,

lim sup
\Delta x,\Delta t\rightarrow 0

sup
(t,x)\in \scrK \cap \scrG \Delta 

| w(t, x) - u(t, x)| = 0.

Proof. Since the scheme is consistent (Proposition 3.6) for a subsequence verifying
min(\Delta x2/\Delta t,\Delta x) \rightarrow 0 and is monotone and stable, we can follow [6, 11, 21] and
obtain the result. Note that the choice of the test functions in the definition of the
consistency at the junction uses Theorem A.2(ii).

Once the convergence of the scheme is shown, we want to provide also some con-
vergence estimates. This is a less easy task. We need to take into account two different
scenarios: For the special case of space-independent Hamiltonians, i.e., assuming the
additional property

(A4) the Lagrangians Li(x, \alpha i) \equiv Li(y, \alpha i) =: Li(\alpha i) for every choice of x, y \in Ji,

it is possible to prove an error bound, independent of the time step. We observe that,
as a consequence of the structure of the costs, the optimal control \=\alpha i is constant in
time and no restriction on the time step is required.

Theorem 4.2 (rate of convergence in the case of space-independent Hamiltoni-
ans). Let (A1), (A2), (A4) be verified. Consider u a viscosity solution of (5), and let
w be a solution of the scheme (7). Then there exists a positive constant C depending
only on the Lipschitz constant of u such that

(20) sup
(t,x)\in \scrG \Delta 

| u(t, x) - w(t, x)| \leq CT\Delta x.

The proof is contained in Appendix C.

For more general Hamiltonians (i.e., without assuming (A4)), we prove an error
bound that applies to any stable, monotone scheme for which a consistency estimate
is valid.

Theorem 4.3 (rate of convergence). Assume (A1)--(A3). Let u be the viscosity
solution of (5), let w be the solution of a scheme for which Proposition 3.1 holds, and
assume that the scheme satisfies a consistency estimate \scrE (\Delta t,\Delta x) as in Definition
3.4. Then there exists a positive constant C independent of \Delta t and \Delta x such that

(21) sup
(t,x)\in \scrG \Delta 

| u(t, x) - w(t, x)| \leq CT

\biggl( \scrE (\Delta t,\Delta x)\surd 
\Delta t

+
\surd 
\Delta t

\biggr) 
+ sup

x\in J\Delta x

| u0(x) - w(0, x)| .

By applying the previous theorem, we get an error estimate for scheme (7) under
a restriction on the time step, given by assumption (13).

Corollary 4.4 (rate of convergence for (7)). In the specific case of the scheme
(7), assuming (13), we have

(22) sup
(t,x)\in \scrG \Delta 

| u(t, x) - w(t, x)| \leq CT

\biggl( \surd 
\Delta t+

1\surd 
\Delta t

min

\biggl( 
\Delta x2

\Delta t
,\Delta x

\biggr) \biggr) 
.
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Remark (CFL condition and error estimates). The CFL condition (13) is needed
to prove the error estimate (22), and it is not assumed to prove the convergence result
in Theorem 4.1. If the assumption (A4) holds, no CFL condition is needed to prove
the error estimate (20).

Proof. As is standard in this kind of proof, we only prove that

(23) u(t, x) - w(t, x) \leq C

\biggl( \scrE (\Delta t,\Delta x)\surd 
\Delta t

+
\surd 
\Delta t

\biggr) 
+ sup

x\in J\Delta x

| u0(x) - w(0, x)| in \scrG \Delta ,

since the reverse inequality is obtained with small modifications. Assume that T \leq 1
(the case T \geq 1 is obtained by induction).

For i \in \{ 1, . . . , N\} and j \in \BbbN , we set xij = j\Delta xei, and we define the extension in
the continuous space of w as

w\#(tn, x) = \BbbI [ \^w(tn, \cdot )](x).

First, we assume that

u0(x
i
j) \geq w\#(0, x

i
j) \forall i \in \{ 0, . . . , N\} and j \in \BbbN ,

and we define
0 \leq \mu 0 := sup

x\in J
\{ | u0(x) - w\#(0, x)| \} ,

assuming without any restriction that \mu 0 \leq K. For every \beta , \eta \in (0, 1) and \sigma > 0, we
define an auxiliary function: for (t, s, x) \in [0, T )\times \{ tn : n = 0, . . . , NT \} \times J ,

\psi (t, s, x) := u(t, x) - w\#(s, x) - 
(t - s)2

2\eta 
 - \beta | x| 2  - \sigma t.

Using Proposition 3.1(iii) and the inequality | u(x, t)  - u0(x)| \leq CT (which holds for
the continuous solution; see Theorem 2.14 in [21]), we deduce that \psi (t, s, x) \rightarrow  - \infty as
| x| \rightarrow +\infty , and then the function \psi achieves its maximum at some point (t\beta , s\beta , x\beta ).
In particular, we have

\psi (t\beta , s\beta , x\beta ) \geq \psi (0, 0, 0) = u0(0) - w\#(0, 0) \geq 0.

In the following, we denote by K several positive constants depending only on the
Lipschitz constants of u.

Case 1: x\beta \in Ji\setminus \{ 0\} . In this case, we duplicate the space variable by considering,
for \varepsilon \in (0, 1),

\psi 1(t, s, x, y) = u(t, x) - w\#(s, y) - 
(t - s)2

2\eta 
 - d(x, y)2

2\varepsilon 
 - \beta 

2
(| x| 2 + | y| 2) - \sigma t

 - \beta 

2
| x - x\beta | 2  - 

\beta 

2
| y  - \=x\beta | 2  - 

\beta 

2
| t - t\beta | 2  - 

\beta 

2
| s - s\beta | 2

for (t, s, x, y) \in [0, T )\times \{ tn : n = 0, . . . , NT \} \times J \times J.

Using Proposition 3.1(iii) again, the inequality | u(x, t)  - u0(x)| \leq CT , and the fact
that u0 is Lipschitz continuous, we deduce that \psi 1(t, s, x, y) \rightarrow  - \infty as | x| , | y| \rightarrow +\infty ,
and then the function \psi 1 achieves its maximum at some point (t, s, x, y), i.e.,

\psi 1(t, s, x, y) \geq \psi 1(t, s, x, y) \forall (t, x), (s, y) \in [0, T )\times J.
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It is also easy to show that (t, s, x, y) \rightarrow (t\beta , s\beta , x\beta , x\beta ) as \varepsilon goes to zero and so
x, y \in Ji \setminus \{ 0\} for \varepsilon small enough.

Step 1 (basic estimates). The maximum point of \psi 1 satisfies the following esti-
mates:

(24) d(x, y) \leq K\varepsilon , | t - s| \leq K\eta ,

(25) \beta 
\bigl( 
| x| 2 + | \=y| 2

\bigr) 
\leq K, \beta 

\bigl( 
| \=x - \=x\beta | 2 + | \=y  - \=x\beta | 2 + | \=t - \=t\beta | 2 + | \=s - \=s\beta | 2

\bigr) 
\leq K.

From
\psi 1(t, s, x, y) \geq \psi 1(t\beta , s\beta , x\beta , x\beta ) = \psi (t\beta , s\beta , x\beta ) \geq 0,

we get (using 0 \geq  - (\=t - \=s)2/2\eta  - d(\=x, \=y)2/2\varepsilon  - \sigma \=t)

\beta 

2
(| \=x| 2 + | \=y| 2) + \beta 

2

\bigl( 
| \=x - \=x\beta | 2 + | \=y  - \=x\beta | 2 + | \=t - \=t\beta | 2 + | \=s - \=s\beta | 2

\bigr) 

\leq u(\=t, \=x) - w\#(\=s, \=y) \leq u0(\=x) - w\#(0, \=y) +K\=t+K\=s \leq K(1 + | \=x| + | \=y| ),(26)

where we used Proposition 3.1(i) (extended to all the points of J thanks to the mono-
tonicity of the interpolation operator), [21, Theorem 2.14] for the second inequality,
and the fact that T \leq 1 for the last one. Using Young's inequality (i.e., the fact that
| \=x| \leq 1/\beta + \beta /4| \=x| 2 since (\beta /2| \=x|  - 1)2 \geq 0) (26) implies in particular that

\beta 

2
(| \=x| 2 + | \=y| 2) \leq K

\biggl( 
1 +

2

\beta 
+
\beta 

4
(| \=x| 2 + | \=y| 2)

\biggr) 
.

Multiplying by \beta and using \beta \leq 1, we finally deduce that

\beta | \=x| , \beta | \=y| \leq K.

Then, using this in (26), we have

\beta 
\bigl( 
| \=x - \=x\beta | 2 + | \=y  - \=x\beta | 2 + | \=t - \=t\beta | 2 + | \=s - \=s\beta | 2

\bigr) 
\leq K

\biggl( 
1 +

1

\beta 

\biggr) 

and, in particular,

\beta (| \=x - \=x\beta | + | \=y  - \=x\beta | + | \=t - \=t\beta | + | \=s - \=s\beta | ) \leq K.

From \psi 1(t, s, x, y) \geq \psi 1(t, s, y, y) we get

(27)
d(x, y)2

2\varepsilon 
\leq u(t, x) - u(t, y) +

\beta 

2
(| \=y| 2  - | x| 2) + \beta 

2
(| \=y  - \=x\beta | 2  - | \=x - \=x\beta | 2)

\leq Kd(\=x, \=y) +
\beta 

2
(| \=x| + | \=y| )d(\=x, \=y) + \beta 

2
(| \=x - \=x\beta | + | \=y  - \=x\beta | )d(\=x, \=y) \leq Kd(\=x, \=y),

which implies the first estimate of (24). The second bound in (24) is deduced from
\psi (t, s, x, y) \geq \psi (s, s, x, y) in the same way.

If we include the estimate

u(\=t, \=x) - w\#(\=s, \=y) \leq u0(\=x) +K\=t - w\#(0, \=y)+K\=s \leq K(\mu 0 + d(\=x, \=y) + 1) \leq K

in the first part of (26), we finally deduce (25).
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Step 2 (viscosity inequalities). We claim that for \sigma large enough, the supremum
of \psi 1 is achieved for t = 0 or s = 0. We prove the assertion by contradiction. Suppose
t > 0 and s > 0. Using the fact that (t, x) \rightarrow \psi 1(t, \=s, x, \=y) has a maximum in (\=x, \=t)
and that u is a subsolution, we get

(28)
\=t - \=s

\eta 
+ \sigma + \beta (\=t - \=t\beta ) +Hi

\biggl( 
d(\=x, \=y)

\varepsilon 
+ \beta | \=x| + \beta (| \=x - \=x\beta | )

\biggr) 
\leq 0.

Since \=s > 0 we know that \psi 1(\=t, \=s, \=x, \=y) \geq \psi 1(\=t, \=s  - \Delta t, \=x, y) for a generic y and, by

defining \varphi (s, y) =  - 
\bigl( (\=t - s)2

2\eta + d(\=x,y)2

2\varepsilon + \beta 
2 | y| 2 +

\beta 
2 | y  - \=x\beta | 2 + \beta 

2 | s - \=s\beta | 2
\bigr) 
, this implies

that, for a generic y,

w\#(\=s, \=y) - \varphi (\=s, \=y) \leq w\#(\=s - \Delta t, y) - \varphi (\=s - \Delta t, y).

In particular, we have that for any z \in J\Delta x

w\#(\=s, \=y) - \varphi (\=s, \=y) \leq w(\=s - \Delta t, z) - \varphi (\=s - \Delta t, z).

By the monotonicity of the scheme and the fact that the scheme is invariant by the
addition of constants, adding w\#(\=s, \=y) - \varphi (\=s, \=y) we get, for any z \in J\Delta x,

w(\=s, z) = S[ \^w(\=s - \Delta t)](z) \geq S[ \^\varphi (\=s - \Delta t)](z) + C.

By the monotonicity of the interpolation operator, this implies

w\#(\=s, \=y) = \BbbI [ \^w(\=s, \cdot )](\=y) \geq \BbbI [S[ \^\varphi (\=s - \Delta t)](\cdot )](\=y) + w\#(\=s, \=y) - \varphi (\=s, \=y).

Simplifying by w\#(\=s, \=y), we obtain

 - 
\sum 

i

\phi i(\=y)S[ \^\varphi (\=s - \Delta t)](yi) =  - \BbbI [S[ \^\varphi (\=s - \Delta t)](\cdot )](\=y) \geq  - \varphi (\=s, \=y),

where \phi i are the basis functions of the interpolation operator. Adding and subtracting
\BbbI [ \^\varphi (\=s, \cdot )](\=y) - \BbbI [ \^\varphi (\=s - \Delta t, \cdot )](\=y) and dividing by \Delta t , we get

\sum 

i

\phi i(\=y)

\biggl( 
\varphi (\=s - \Delta t, yi) - S[ \^\varphi (\=s - \Delta t)](yi)

\Delta t
+
\varphi (\=s, yi) - \varphi (\=s - \Delta t, yi)

\Delta t

\biggr) 
\geq \scrO 

\biggl( 
\Delta x2

\varepsilon 

\biggr) 
,

where we have used \varphi xx = \scrO ( 1\varepsilon ) together with the properties of the interpolation

operator. We observe that \varphi (\=s,yi) - \varphi (\=s - \Delta t,yi)
\Delta t = \varphi s(\=s, yi) + \scrO (\Delta t/\eta ); then, using the

consistency definition (Definition 3.4), we obtain

\sum 
\phi i(\=y) ( - \varphi s(\=s, yi) +Hi(\varphi x(\=s - \Delta t, yi))) \geq \scrO 

\biggl( 
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
+

\scrE (\Delta t,\Delta x)
\varepsilon 

.

By the regularity of \varphi and H (Lipschitz continuous) and the interpolation error for
the Lipschitz function, there exists a positive constant K such that

(29) \varphi s(\=s, \=y) +Hi(\varphi x(\=s - \Delta t, \=y)) \geq  - K
\biggl( 
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
+

\scrE (\Delta t,\Delta x)
\varepsilon 

.

We subtract (29) from (28) and use the explicit form of \varphi , obtaining

\sigma + \beta (\=s - \=s\beta ) + \beta (\=t - \=t\beta ) +Hi

\biggl( 
d(\=x, \=y)

\varepsilon 
+ \beta | \=x| + \beta (| \=x - \=x\beta | )

\biggr) 

 - Hi

\biggl( 
d(\=x, \=y)

\varepsilon 
 - \beta | \=y|  - \beta (| \=y  - \=x\beta | )

\biggr) 
\leq K

\biggl( 
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
+

\scrE (\Delta t,\Delta x)
\varepsilon 

.
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Then, using that Hi is Lipschitz continuous and the basic estimates of Step 1, we
arrive at

(30) \sigma < K
\sqrt{} 
\beta +K

\biggl( 
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
+

\scrE (\Delta t,\Delta x)
\varepsilon 

=: \sigma \ast .

Therefore, we have that for a \sigma \geq \sigma \ast , at least one between \=t and \=s is equal to zero.

Step 3 (conclusion). If t = 0 (a similar argument applies if \=s = 0), we have

\psi 1(0, \=s, \=x, \=y) \leq u0(x) - w\#(s, y) \leq u0(x) - u0(y) + Cs+ \mu 0 \leq K\varepsilon +K\eta + \mu 0.

Taking \sigma = \sigma \ast , we obtain

u(t, x) - w\#(t, x) - 
\beta 

2

\bigl( 
| x| 2 + | y| 2 + | x - \=x\beta | 2 + | y  - \=x\beta | 2 + | t - \=t\beta | 2 + | s - \=s\beta | 2

\bigr) 

 - 
\biggl( 
K
\sqrt{} 
\beta +K

\biggl( 
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
+

\scrE (\Delta t,\Delta x)
\varepsilon 

\biggr) 
T \leq K\varepsilon +K\eta + \mu 0,

where, sending \beta \rightarrow 0 and choosing \varepsilon = \eta =
\surd 
\Delta t, we get the desired estimate.

Case 2: x\beta = 0.
Step 1 (basic estimates). This step is identical to the previous case. In addition,

we observe that, assuming

(31) \sigma > K
\sqrt{} 
\beta +K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\varepsilon 
+

\Delta x

\varepsilon 

\biggr) 

(which is compatible with \sigma > \sigma \ast ), then there exists an \=A \in \BbbR such that

(32)
\=s\beta  - \=t\beta 
\eta 

 - K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\varepsilon 

\biggr) 
+K

\sqrt{} 
\beta > \=A >

\=s\beta  - \=t\beta 
\eta 

 - \sigma +K
\sqrt{} 
\beta .

Using the fact that (t, x) \rightarrow \psi (t, \=s\beta , x) has a maximum in (\=t\beta , \=x\beta ) and that u is a
subsolution, we get

(33)
\=t\beta  - \=s\beta 
\eta 

+ \sigma + F - L0
(\partial x\varphi (\=t\beta , 0)) \leq 0,

with \varphi (t, x) = w\#(\=s\beta , x) +
(t - \=s\beta )

2

2\eta + \beta | x| 2 + \sigma t, and from (33) and (32),

(34) \=A > F - L0 (\partial x\varphi (\=t\beta , 0)) .

We use (34), the definition of F - L0
, and the coercivity of the Hamiltonians to obtain

the existence of values \lambda i such that

(35) Hi(\lambda i) = H+
i (\lambda i) = \=A

(cf. Figure 2), which will be useful in the remaining part of the proof.
Now we move on to identify the right test function to treat this case. We duplicate

the space variable differently than in Case 1. We consider, for \varepsilon \in (0, 1),

\psi 2(t, s, x, y) = u(t, x) - w\#(s, y) - 
(t - s)2

2\eta 
 - d(x, y)2

2\varepsilon 
 - \beta 

2
(| x| 2 + | y| 2)

 - \sigma t - (h(x) + h(y)) - \beta 

2
(t - t\beta )

2  - \beta 

2
(s - s\beta )

2

for (t, s, x, y) \in [0, T )\times \{ tn : n = 0, . . . , NT \} \times J \times J,
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H

H

H

1

2

3

p

A

λ3λ1λ2

Fig. 2. An example of H+
i functions.

where h(x) = \lambda ix if x \in Ji and the \lambda i are defined in (35).
We denote by (t, s, x, y) the maximum point of \psi 2 (we keep the same notation as

the previous case, but they are possibly different points). We remark that (t, s, x, y) \rightarrow 
(t\beta , s\beta , x\beta , x\beta ) as \varepsilon \rightarrow 0.

Step 2 (viscosity inequalities). We claim that for \sigma large enough, the supremum
of \psi 1 is achieved for t = 0 or s = 0. We prove the assertion by contradiction. Suppose
t > 0 and s > 0. We can have different scenarios: If x and y belong to the same arc
(junction point excluded), the case is contained in Case 1. If instead \=x \in Ji \setminus \{ 0\} ,
\=y \in Jj (\=x and \=y belong to different arcs), we can repeat the same argument to obtain
(28) with the test function \psi 2. We have

\=t - \=s

\eta 
+ \beta (\=t - \=t\beta ) + \sigma +Hi

\biggl( 
d(\=x, \=y)

\varepsilon 
+ 2\beta | \=x| + \lambda i

\biggr) 
\leq 0.

Observing that the argument inside the Hamiltonian is bigger than \lambda i, we use (35)
and arrive at

0 \geq 
\=t - \=s

\eta 
+ \beta (\=t - \=t\beta ) + \sigma +H+

i (\lambda i) =
\=t\beta  - \=s\beta 
\eta 

+ \sigma + \=A+K
\sqrt{} 
\beta ,

which contradicts (32). Then this case cannot occur.
We go on to the last case to consider \=x = 0, \=y \in Ji \setminus \{ 0\} . First of all, we notice

that the basic estimates (24)--(25) are still valid for (t, s, x, y) maximum points of \psi 2

since the added terms h(x), h(y) are easily included in the other linear elements of
the estimates.

In this case, the difficulty comes from comparing two Hamiltonians evaluated,
respectively, on the junction point and on one arc. Using the subsolution property
with the test function \psi 2, we have as the first equation

(36)
\=t - \=s

\eta 
+ \beta (\=t - \=t\beta ) + \sigma + F - L0

\biggl(  - | \=y| 
\varepsilon 

+ \lambda i

\biggr) 
\leq 0,

where

F - L0

\biggl(  - | \=y| 
\varepsilon 

+ \lambda i

\biggr) 
= max

\biggl( 
 - L0, max

j

\biggl( 
H - 

j

\biggl(  - | \=y| 
\varepsilon 

+ \lambda i

\biggr) \biggr) \biggr) 
.
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From the definition of FA it is also valid that

(37)
\=t - \=s

\eta 
+ \beta (\=t - \=t\beta ) + \sigma +H - 

i

\biggl(  - | \=y| 
\varepsilon 

+ \lambda i

\biggr) 
\leq 0.

Since \=y \in Ji \setminus \{ 0\} , with the same argument as that used to obtain (29) (but for the
test function \psi 2) and using the consistency result, we have

\=t - \=s

\eta 
+ \beta (\=s - \=s\beta ) +Hi

\biggl(  - | \=y| 
\varepsilon 

 - 2\beta \=y + \lambda i

\biggr) 
\geq K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
.

Now recalling that H+(\lambda i) = \=A,

\=t - \=s

\eta 
+ \beta (\=s - \=s\beta ) +H+

i

\biggl(  - | \=y| 
\varepsilon 

 - 2\beta \=y + \lambda i

\biggr) 
 - K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 

\leq 
\=t - \=s

\eta 
+ \beta (\=s - \=s\beta ) +H+

i (\lambda i) - K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 

\leq 
\=t\beta  - \=s\beta 
\eta 

+K
\sqrt{} 
\beta + \=A - K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
< 0

for \varepsilon small enough, where we used \beta (\=s - \=s\beta ) \leq K
\surd 
\beta (basic estimates). We can claim

that

(38)
\=t - \=s

\eta 
+ \beta (\=s - \=s\beta ) +H - 

i

\biggl(  - | \=y| 
\varepsilon 

 - 2\beta \=y + \lambda i

\biggr) 
\geq K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\eta 
+

\Delta x2

\varepsilon 

\biggr) 
.

Finally, we subtract (38) from (36), obtaining the desired estimate on \sigma :

(39) \sigma \leq K
\sqrt{} 
\beta +K

\biggl( \scrE (\Delta t,\Delta x)
\varepsilon 

+
\Delta t

\varepsilon 
+

\Delta x

\varepsilon 

\biggr) 
:= \sigma \ast .

In this case we obtain a contradiction with (31): since, assuming \sigma > \sigma \ast , at least one
between t and s is equal to zero.

Step 3 (conclusion). We obtain the same estimate as in Case 1.

It just remains to prove the general case (for which we do not assume that u0(x) \geq 
w\#(0, x) for all x \in J\Delta x). Remarking that \=u = u+\mu 1 with \mu 1 = supx\in J\Delta x(w\#(0, x) - 
u0(x)) is a solution of the same equation of u but satisfying \=u(0, x) \geq w\#(0, x) for all
x \in J\Delta x, we deduce that \=u satisfies

sup
(t,x)\in \scrG \Delta 

(u(t, x) + \mu 1  - w(t, x))

\leq C

\biggl( \scrE (\Delta t,\Delta x)\surd 
\Delta t

+
\surd 
\Delta t

\biggr) 
+ sup

x\in J\Delta x

| u0(x) + \mu 1  - w(0, x)| ,

which implies (23), ending the proof of the theorem.

5. Numerical tests. In this section, we present some numerical simulations to
show the features and the convergence properties of the scheme proposed. In the first
two tests assumptions (A1)--(A4) are verified, while in the last test (A4) does not
hold.
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Fig. 3. Initial condition and numerical solution at time t = 0.2 (left) and at time T = 2 (right),
computed with parameter L0 = 0, 0.2, 0.4, 0.6.

Test 1. We consider a basic network composed of two edges connecting the
nodes ( - 1, 0) and (1, 0) with a junction in 0. This case can be seen as a 1D problem
in \Gamma = \Gamma 1 \cup \Gamma 2 = [ - 1, 0] \cup [0, 1] = [ - 1, 1] with a discontinuity on the Hamiltonian
at the origin. Despite its simplicity, this test helps us to understand the effect of the
flux limiter contained in the operator FA.

We consider the following Hamiltonian on \Gamma :

H(x, p) =

\Biggl\{ 
p2

2  - 1
2 , x \in \Gamma 1,

p2

2  - 1, x \in \Gamma 2.

This example was used as a benchmark also in [20]. Using the Legendre transform,
we rewrite (5) as

H(x, p) =

\left\{ 
   
   

max
\alpha \in \BbbR 

\biggl( 
\alpha 1p - 

\alpha 2
1

2

\biggr) 
 - 1

2
, x \in \Gamma 1,

max
\alpha \in \BbbR 

\biggl( 
\alpha 2p - 

\alpha 2
2

2

\biggr) 
 - 1, x \in \Gamma 2,

where we can deduce L1(\alpha 1) = (\alpha 2
1 + 1)/2 and L2(\alpha 2) = (\alpha 2

1 + 2)/2. We choose
as initial condition u0(x) = sin(\pi | x| ), and we impose Dirichlet boundary conditions
u(t, - 1) = u(t, 1) = 0. The Dirichlet boundary conditions are implemented numeri-
cally by truncating the characteristics that cross the boundary, as in [15].

In Figure 3, we show the numerical solution at time t = 0.2 and T = 2 com-
puted with parameter L0 = 0, 0.2, 0.4, 0.6. We can observe that the asymmetry of
the Hamiltonian with respect to the origin induces an asymmetric behavior on the
solution. We can also highlight how the choice of parameter L0 influences globally the
value function of the problem. In fact, when L0 = 0 the optimal control in x = 0 is
simply \alpha 0 = 0, which corresponds to a zero cost, and since u0(0) = 0, the solution
u(t, 0) = 0 for each t \in [0, T ]. This explains the choice of the name flux limiter for
L0: in this case the parameter blocks the passage of information between the two
arcs which could be solved separately. In the case of L0 > 0 the situation is different:
the control \alpha 0 = 0 does not correspond to a null cost. A trajectory, which remains
on the junction point, entails a cost. Furthermore, we observe that for values of | L0| 
sufficiently large, the behavior of the solution does not change anymore with respect
to L0. This happens because remaining on the junction point is no longer a conve-
nient choice, i.e., the transition condition (6) is reached only by one nonincreasing
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dx
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Fig. 4. Graphic of E\Delta 
\infty with respect the space step, together with the line K\Delta x. Left: L0 = 0,

with K = 3.7. Right: L0 = 0.2, with K = 3.9.

Hamiltonian. Therefore, the flux limiter is not active anymore.
In Figure 4, we show the convergence rates in the case of L0 = 0 and L0 = 0.2.

In the absence of an analytic exact solution, we compare the approximated solution
w(T, x) with an approximation u(T, x) obtained on a very fine grid with \Delta x = 10 - 4

and \Delta t = 2.5\Delta x. The error is evaluated with respect to the uniform discrete norm
defined by

(40) E\Delta 
\infty := max

x\in J\Delta x
(| w(T, x) - u(T, x)| ).

The error E\Delta 
\infty as a function of \Delta x is represented in Figure 4 for the choice L0 = 0

(left) and L0 = 0.2 (right), with the final time T and the time step fixed at T = 0.2
and \Delta t = 2.5\Delta x. We observe in the case L0 = 0 a linear decay of the E\Delta 

\infty error;
in particular, the E\Delta 

\infty errors fit with a linear regression curve of ratio K1 = 3.7. We
also observe the same convergence order in the case L0 = 0.2, with almost the same
ratio K1 = 3.9. In this case, since Theorem 4.2 holds, their rate of convergence is 1
independently of the choice of \Delta t, so large time steps are allowed (cf. [15], where a
similar property is discussed for Euclidean domains).

Test 2. We consider a simple junction network composed of three edges connect-
ing the nodes (0, 1), ( - 1, - 1), (1, - 1) with the junction point placed at (0, 0). We
denote by J1 the edge connecting (0, 1) to (0, 0) and by J2, J3 the edges connecting
(0, 0) to (1, - 1) and ( - 1, - 1), respectively. The cost functions Li, i = 0, 1, 2, 3, are
defined as

Li(\alpha i) =

\left\{ 
    
    

\alpha 2
i

2 + 1 if i = 1, 3,
\alpha 2

i

2 + 2 if i = 2,

2 if i = 0 and \alpha 0 = 0,
+\infty if i = 0 and \alpha 0 \not = 0.

We impose Dirichlet boundary conditions on the boundary nodes:

u(t, x) =

\biggl\{ 
0 if x = \{ ( - 1, - 1), (1, - 1)\} ,\surd 
2 + 1 if x = \{ (0, 1)\} .

The initial value u0 is chosen as the restriction of 1 + x2 on J , where we denote
(x1, x2) = x. In Figure 5, we show the color map of the initial condition and of the
numerical solution at time t = 0.5, 1, 1.5, projected on the state coordinate plane. It
is possible to observe that the initial datum u0 (Figure 5, top left) quickly evolves to
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Fig. 5. Projection on the state coordinate plane of the Initial Condition (top left), numerical
solution at time t = 0.5 (top right), t = 1 (bottom left) and t = 1.5 (bottom right).

defined as follows

Li(αi) =





α2
i

2 + 1 if i = 1, 3,
α2
i

2 + 2 if i = 2,
2 if i = 0, and α0 = 0,
+∞ if i = 0, and α0 6= 0.

We impose Dirichlet boundary conditions on the boundary nodes:

u(t, x) =

{
0 if x = {(−1,−1), (1,−1)},√

2 + 1 if x = {(0, 1)}.

The initial value u0 is chosen as the restriction of 1 + x2 on J , where we denote
(x1, x2) = x. In Figure 5, we show the color map of the initial condition and of the
numerical solution at time t = 0.5, 1, 1.5, projected on the state coordinate plane. It
is possible to observe that the initial datum u0 (Fig. 5 left/top) quickly evolves to
the stationary solution (Fig. 5 right/bottom), which represents a weighted distance
from the boundary points, with exit costs equal to the boundary values.

We compare the approximate solution at T = 1.5 with the exact solution of the
corresponding stationary problem; this makes sense since the approximate solution
has already reached the steady state. The exact steady state solution is

(40) u(x) =





√
2 + x2, if x ∈ J1,

min
(

2
√

(x1 − 1)2 + (x2 + 1)2,
√

2 + 2
√
x2

1 + x2
2

)
, if x ∈ J2,√

(x1 + 1)2 + (x2 + 1)2, if x ∈ J3.

Fig. 5. Projection on the state coordinate plane of the initial condition (top left), numerical
solution at time t = 0.5 (top right), t = 1 (bottom left), and t = 1.5 (bottom right).

the stationary solution (Figure 5, bottom right), which represents a weighted distance
from the boundary points, with exit costs equal to the boundary values.

We compare the approximate solution at T = 1.5 with the exact solution of the
corresponding stationary problem; this makes sense since the approximate solution
has already reached the steady state. The exact steady state solution is

(41) u(x) =

\left\{ 
   
   

\surd 
2 + x2 if x \in J1,

min
\Bigl( 
2
\sqrt{} 
(x1  - 1)2 + (x2 + 1)2,

\surd 
2 + 2

\sqrt{} 
x21 + x22

\Bigr) 
if x \in J2,

\sqrt{} 
(x1 + 1)2 + (x2 + 1)2 if x \in J3.

In Figure 6, we show the behavior of the error (40) for various values of \Delta x, setting
\Delta t = 2.5\Delta x. We observe as in the first test a linear decay of the E\Delta 

\infty , allowing large
time steps.

Test 3. We conclude this section by treating a more complex network. We
consider a network formed by 4-junctions and 8-arcs, defined in (x1, x2) \in \BbbR 2 and
connecting the points V1 = ( - 2, 0), V2 = ( - 1, 0), V3 = (0, 2), V4 = (0, 1), V5 = (2, 0),
V6 = (1, 0), V7 = (0, - 2), V8 = (0, - 1). We define the edges J1 = V1V2, J2 = V2V4,
J3 = V2V8, J4 = V3V4, J5 = V4V6, J6 = V5V6, J7 = V6V8, J8 = V7V8. We choose the
costs on each arc as

Li(x, \alpha i) =

\Biggl\{ 
\alpha 2

i

2 + (2 + x1)
2 for i = 1, 2, 3, 4,

\alpha 2
i

2 + ( - 2 + x2)
2 for i = 5, 6, 7, 8.

We set the costs on the junction points Vi with i = 2, 4, 8 (when the relative control
\alpha 0 is null) equal to L(Vi, \alpha ) = 4, and on V6 equal to L(V6, \alpha ) = 0.4. We impose zero
Dirichlet boundary conditions on the boundary points Vi with i = 1, 3, 5, 7.
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Fig. 6. Graphic of E\Delta 
\infty with respect to the space step, together with the line K\Delta x with K = 6.5.

We choose as discretization steps \Delta x = 0.013, \Delta t = 0.065 and as the initial
condition u0 = 2 - (x21+x

2
2)/2. We observe that the CFL condition (13) is not verified,

but we have convergence since Theorem 4.1 holds (but the estimate Theorem 4.3 does
not hold).

In Figure 7, we show the initial value function and its evolution at different times.
We observe that the value function starts from a symmetric configuration, and it loses
its symmetry since the costs are not constant on the various edges of the network and
they also depend on x. We highlight also that an optimal trajectory does not stop at
junction points since it would run into a cost considerably higher than elsewhere in
the network. The only exception is in V6, where the waiting cost is 0.4, and it is where
the value function assumes a local minimum. Clearly, for t \rightarrow +\infty such a minimum
tends to disappear since the cost is positive. In Figure 8, we also compare the value
function at t = 1.4 with the value function computed using same data except for the
cost in V6, which is set to L(V6, \alpha ) = 4. We observe that since in this case the cost to
stop in V6 is higher, the local minimum disappears.

Choosing an effective Courant number is not a trivial task. In particular, large
Courant numbers can considerably increase the complexity of the scheme near the
junctions. In contrast, the opposite can produce low accuracy for long time approxi-
mations due to numerical diffusion effects.

In Table 1, we show the CPU times of a code implementing the proposed method
for Test 3. The code is written in MATLAB R2018a and runs on a MacBook Pro
2017, 2.5 GHz, Intel Core i7. The variable nc represents the number of points used
to compute the minimum by comparison, with respect to the time s0, in (3).

The second and third columns show that the minimum complexity is reached
when \Delta t = \Delta x/8, which corresponds to the case when the discrete characteristics
do not cross the junctions. Choosing a time step lower than \Delta x/8 is no longer
convenient in terms of computational time. In the last column, we consider the case
when L(Vi, \alpha ) = 4 for i = 2, 4, 6, 8. This choice corresponds to the case in which the
characteristics never stop at the junctions. Therefore the minimization with respect
to s0 is not necessary, and nc is set to 1. In this case, the minimum complexity is
reached using the largest time step.

In conclusion, Table 1 shows that large time steps may imply higher complexity
due to the cost of exploring all the arcs and computing the minimum of the waiting
time s0 on the junctions. However, in semi-Lagrangian schemes, large time steps cor-
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Fig. 7. Evolution of the value function at times t = 0, 0.26, 0.52, 1.04.

Test 3. The code is written in MatLab R2018a and runs on a MacBookPro 2017 2.5
GHz Intel Core i7. The variable nc represents the number of points used to compute
the minimum by comparison, with respect to the time s0, in (3).
The second and third columns show that the minimum complexity is reached when
∆t = ∆x/8, which corresponds to the case when the discrete characteristics do not
cross the junctions. Choosing a time step lower than ∆x/8 is no more convenient
in terms of computational time. In the last column, we consider the case when
L(Vi, α) = 4 for i = 2, 4, 6, 8. This choice corresponds to the case in which the char-

Fig. 7. Evolution of the value function at times t = 0, 0.26, 0.52, 1.04.

respond to less diffusive numerical approximations. Still, very large time steps can
imply a low accuracy in the approximation of the characteristics (when the charac-
teristics are not straight lines). The best choice, in terms of accuracy, may consist in
choosing a time step which optimizes the consistency error proved in Proposition 3.5.

Appendix A. Definition of viscosity solution. Let us introduce the class
of test functions. For T > 0, set JT = (0, T )\times J . We define the class of test functions
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Fig. 8. Comparison between the value functions varying the cost in V6, L(V6, α) = 0.4 (above)
L(V6, α) = 4 (below) at time t = 1.04.

acteristics never stop on the junctions. Therefore the minimization with respect to s0

is not necessary, and nc is set to 1. In this case, the minimum complexity is reached
using the largest time step.
In conclusion, Table 1 shows that large time steps may imply higher complexity due to
the cost of exploring all the arcs and computing the minimum of the waiting time s0

on the junctions. However, in semi-Lagrangian schemes, large time steps correspond
to less diffusive numerical approximations. Still, very large time steps can imply a
low accuracy in the approximation of the characteristics (when the characteristics are
not straight lines). The best choice, in term of accuracy, may consist in choosing a
time step which optimizes the consistency error proved in Prop. 3.5.

L(V6, α) = 0.4 L(V6, α) = 4
∆t nc =3 nc =6 nc =1
4∆x 10.4 19.4 3.7
2∆x 9.8 19.0 3.7
∆x 9.6 18.0 3.9
∆x/2 8.8 15.6 4.1
∆x/4 8.3 13.2 5.2
∆x/8 7.4 7.5 7.2
∆x/16 14.7 14.8 14.4
∆x/32 29.5 30.0 28.5

Table 1
CPU times in seconds for Test 3, computed with ∆x = 0.013

Appendix A. Definition of viscosity solution. Let us introduce the class
of test functions. For T > 0, set JT = (0, T )×J . We define the class of test functions

Fig. 8. Comparison between the value functions varying the cost in V6, L(V6, \alpha ) = 0.4 (above),
L(V6, \alpha ) = 4 (below) at time t = 1.04.

Table 1
CPU times in seconds for Test 3, computed with \Delta x = 0.013.

L(V6, \alpha ) = 0.4 L(V6, \alpha ) = 4
\Delta t nc = 3 nc = 6 nc = 1
4\Delta x 10.4 19.4 3.7
2\Delta x 9.8 19.0 3.7
\Delta x 9.6 18.0 3.9
\Delta x/2 8.8 15.6 4.1
\Delta x/4 8.3 13.2 5.2
\Delta x/8 7.4 7.5 7.2
\Delta x/16 14.7 14.8 14.4
\Delta x/32 29.5 30.0 28.5

on JT and on J as

Ck(JT ) = \{ \varphi \in C(JT ), \varphi \in Ck((0, T )\times Ji \forall i = 1, . . . , N)\} ,

Ck(J) = \{ \varphi \in C(J), \varphi \in Ck(Ji) \forall i = 1, . . . , N\} .
We recall also the definition of upper and lower semicontinuous envelopes u\ast and u\ast 
of a (locally bounded) function u defined on [0, T )\times J ,

u\ast (t, x) = lim sup
(s,y)\rightarrow (t,x)

u(s, y) and u\ast (t, x) = lim inf
(s,y)\rightarrow (t,x)

u(s, y).

We say that a test function \varphi touches a function u from below (resp., from above) at
(t, x) if u - \varphi reaches a local minimum (resp., maximum) at (t, x).

Definition A.1 (flux-limited solutions). Assume that the Hamiltonian satisfies
some standard hypotheses of regularity, convexity, and coercivity and let u : [0, T ) \times 
J \rightarrow \BbbR .
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(i) We say that u is a flux-limited subsolution (resp., flux-limited supersolution)
of (5) in (0, T ) \times J if for all test functions \varphi \in C1(JT ) touching u\ast from
above (resp., u\ast from below) at (t0, x0) \in JT , we have

(42)
\varphi t(t0, x0) +Hi(x0, \varphi x(t0, x0)) \leq 0 (resp., \geq 0) if x0 \in Ji,
\varphi t(t0, x0) + FA(\varphi x(t0, x0)) \leq 0 (resp., \geq 0) if x0 = 0.

(ii) We say that u is a flux-limited subsolution (resp., flux-limited supersolution)
of (5) on [0, T )\times J if additionally

(43) u\ast (0, x) \leq u0(x) (resp., u\ast (0, x) \geq u0(x)) \forall x \in J.

(iii) We say that u is a flux-limited solution if u is both a flux-limited subsolution
and a flux-limited supersolution.

In [21], an equivalent definition of viscosity solutions for (5) is proved. We use
this equivalent definition in particular in the definition of the consistency in section 3.
In the following theorem, we adapt this result for Hamiltonians depending on x. The
proof is a straightforward adaptation of the one in [21].

Theorem A.2 (equivalent definition for subsolutions/supersolutions). Let \=H0 =
maxj minpHj(0, p) and consider A \in [ \=H0,+\infty ). Given solutions pAi \in \BbbR of

(44) Hi

\bigl( 
0, pAi

\bigr) 
= H+

\bigl( 
0, pAi

\bigr) 
= A,

let us fix any time-independent test function \phi 0(x) satisfying, for i = 1, . . . , N ,

\partial i\phi 
0(0) = pAi .

Given a function u : (0, T )\times J \rightarrow \BbbR , the following properties hold true:
(i) If u is an upper semicontinuous subsolution of (5) with A = H0, for x \not = 0,

satisfying

u(t, 0) = lim sup
(s,y)\rightarrow (t,0), y\in J\ast 

i

u(s, y),(45)

then u is an H0-flux limited subsolution.
(ii) Given A > H0 and t0 \in (0, T ), if u is an upper semicontinuous subsolution of

(5) for x \not = 0, satisfying (45), and if for any test function \varphi touching u from above at
(t0, 0) with

\varphi (t, x) = \psi (t) + \phi 0(x),(46)

for some \psi \in C2 ((0,+\infty )), we have

\varphi t + FA (\varphi x) \leq 0 at (t0, 0),

then u is an A-flux limited subsolution at (t0, 0).
(iii) Given t0 \in (0, T ), if u is a lower semicontinuous supersolution of (5) for

x \not = 0, and if for any test function \varphi satisfying (46) touching u from above at (t0, 0)
we have

\varphi t + FA (\varphi x) \geq 0 at (t0, 0),

then u is an A-flux limited supersolution at (t0, 0).
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Remark. In fact this theorem shows that, at the junction, it is sufficient to test
with a test function having the form (46).

Appendix B. Proof of Proposition 3.2.

Proof. In this proof, we denote by C a constant that depends only on Li and that
may change line to line and with Lf the Lipschitz constant of a generic function f .

Let us just assume that x, y \in Ji \cap J\Delta x. The latter is not restrictive since if
x \in Jj \cap J\Delta x, y \in Ji \cap J\Delta x with j \not = i, we come back to the case of a comparison
between points belonging to the same arc, writing

| w(tn, x) - w(tn, y)| \leq | w(tn, x) - w(tn, 0)| + | w(tn, 0) - w(tn, y)| .

We denote by \=\alpha i the optimal control of S[wn - 1](y) associated to the i-arc. We consider
three different cases:

(1) \=\alpha i < | y| /\Delta t with y \not = 0. In this case, we consider \alpha i such that x - \Delta t\alpha iei =
y  - \Delta t\=\alpha iei. This means that

(47) | \alpha i  - \=\alpha i| =
| x - y| 
\Delta t

.

Using the suboptimal control \alpha i for S[ \^w
n - 1](x) yields

w(tn, x) - w(tn, y) \leq \BbbI [ \^wn - 1] ( - (x - \alpha i\Delta tei)) + \Delta tLi(x, \alpha i)

 - \BbbI [ \^wn - 1] ( - (y  - \=\alpha i\Delta tei)) - \Delta tLi(y, \=\alpha i) \leq \Delta tLLi | \alpha i  - \=\alpha i| \leq LLi | x - y| .

(2) 0 < | y| 
\Delta t \leq \=\alpha i. In this case the discrete trajectory starting from y passes

through the junction. We denote by (\=\alpha i, \=s0, \=\alpha 0, \=j, \=\alpha \=j) the optimal control associated
with S[ \^wn - 1](y). We distinguish two subcases:

(2.i) x = 0. In this case, we choose the suboptimal control (\=s0 +
| y| 
\=\alpha i
, \=\alpha 0, \=j, \=\alpha \=j) (if

\=\alpha 0 \not = 0, we replace it by 0 in order to stay in the origin), obtaining

w(tn, x) - w(tn, y) \leq \BbbI [ \^wn - 1]

\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
\=\alpha \=je\=j

\biggr) 
+

\biggl( 
\=s0 +

| y| 
\=\alpha i

\biggr) 
L0(\=\alpha 0)

+

\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
L\=j(0, \=\alpha \=j) - \BbbI [ \^wn - 1]

\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
\=\alpha \=je\=j

\biggr) 

 - 
\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
L\=j(0, \=\alpha \=j)  - \=s0L0(\=\alpha 0) - 

| y| 
\=\alpha i
Li(y, \=\alpha i) \leq 

| y| 
\=\alpha i

(L0(\=\alpha 0) - Li(y, \=\alpha i)) .

If \=\alpha i \geq 1, using that Li is Lipschitz continuous, we get that there exists a constant C
(depending only on Li(y, 0) and the Lipschitz constant of Li) such that

| Li(y, \=\alpha i)| 
| \=\alpha i| 

\leq C.

Injecting the estimate above into (8) and using that L0(0) is bounded, we deduce

w(tn, x) - w(tn, y) \leq C| y| = Cd(x, y).

If \=\alpha i \leq 1, since L0(0) and Li(\=\alpha i) are bounded, there exists a constant C such that

w(tn, x) - w(tn, y) \leq C
| y| 
\=\alpha i

\leq C\Delta t.

D
ow

nl
oa

de
d 

11
/1

0/
20

 to
 1

51
.1

00
.1

01
.4

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3192 E. CARLINI, A. FESTA, AND N. FORCADEL

We finally get that in all the cases, w(tn, x) - w(tn, y) \leq C (\Delta t+ d(x, y)) .

(2.ii) | x| > 0. In this case, we choose \alpha i such that | x| 
\alpha i

= | y| 
\=\alpha i
. This implies in

particular

x - | x| 
\alpha i
\alpha iei = y  - | x| 

\alpha i
\=\alpha iei,

and so | x| 
\alpha i

| \alpha i  - \=\alpha i| = | x - y| = d(x, y). Using the suboptimal control (\alpha i, \=s0, \=\alpha 0, \=j, \=\alpha \=j)

for S[wn - 1](x), we have

w(tn, x) - w(tn, y)

\leq \BbbI [ \^wn - 1]

\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| x| 
\alpha i

\biggr) 
\=\alpha \=je\=j

\biggr) 
+

\biggl( 
\Delta t - \=s0  - 

| x| 
\alpha i

\biggr) 
L\=j(0, \=\alpha \=j)

+ \=s0L0(\=\alpha 0) +
| x| 
\alpha i
Li(x, \alpha i) - \BbbI [ \^wn - 1]

\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
\=\alpha \=je\=j

\biggr) 

 - 
\biggl( 
\Delta t - \=s0  - 

| y| 
\=\alpha i

\biggr) 
L\=j(0, \=\alpha \=j) - \=s0L0(\=\alpha 0) - 

| y| 
\=\alpha i
Li(y, \=\alpha i)

\leq LLi

| x| 
\alpha i

| \alpha i  - \=\alpha i| \leq LLi
d(x, y).

(3) y = 0. We denote by (\=s0, \=\alpha 0, \=j, \=\alpha \=j) the optimal control associated to the
operator S[wn - 1](y). We distinguish two subcases again:

(3.i) \=s0 = \Delta t. We choose \alpha i \geq max(1, | x| \Delta t ) and the suboptimal control (\alpha i, \=s0  - 
| x| 
\alpha i
, \=\alpha 0) for S[w

n - 1](x), obtaining

w(tn, x) - w(tn, y)

\leq \BbbI [ \^wn - 1] (0) +

\biggl( 
\=s0  - 

| x| 
\alpha i

\biggr) 
L0(\=\alpha 0) +

| x| 
\alpha i
Li(x, \alpha i) - \BbbI [ \^wn - 1] (0) - \=s0L0(\=\alpha 0)

\leq | x| 
\alpha i

(Li(x, \alpha i) - L0(\=\alpha 0)) \leq LLi
d(x, y).

Using that Li is Lipschitz continuous, we get that there exists a constant C (depending
only on Li(0), L0(0) and on the Lipschitz constant of Li) such that

| Li(x, \=\alpha i)| + | L0(\=\alpha 0)| 
| \=\alpha i| 

\leq C.

This implies that w(tn+1, x) - w(tn+1, y) \leq C| x| = Cd(x, y).
(3.ii) \=s0 < \Delta t. We choose \alpha i \geq max(1, | \=\alpha \=j | ) such that

(48)
| x| 
\alpha i

\leq \Delta t - \=s0
2

and
\Delta t - \=s0

\Delta t - \=s0  - | x| 
\alpha i

| \=\alpha \=j | \leq \alpha i.

We also set \alpha \=j = \Delta t - \=s0
\Delta t - \=s0 - | x| 

\alpha i

\=\alpha \=j , which satisfies in particular \alpha i \geq | \alpha \=j | . Taking the
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suboptimal control (\alpha i, \=s0, \=\alpha 0, \=j, \alpha \=j) for S[w
n - 1](x), we get

(49) w(tn, x) - w(tn, y) \leq \BbbI [ \^wn - 1]

\biggl( 
 - 
\biggl( 
\Delta t - \=s0  - 

| x| 
\alpha i

\biggr) 
\alpha \=je\=j

\biggr) 

+

\biggl( 
\Delta t - \=s0  - 

| x| 
\alpha i

\biggr) 
L\=j(0, \alpha \=j) + \=s0L0(\=\alpha 0) +

| x| 
\alpha i
Li(x, \alpha i)

 - \BbbI [ \^wn - 1]
\bigl( 
 - (\Delta t - \=s0) \=\alpha \=je\=j

\bigr) 
 - (\Delta t - \=s0)L\=j(0, \=\alpha \=j) - \=s0L0(\=\alpha 0)

\leq | x| 
\alpha i

\bigl( 
Li(x, \alpha i) - L\=j(0, \alpha \=j)

\bigr) 
+ (\Delta t - \=s0)

\bigl( 
L\=j(0, \alpha \=j) - L\=j(0, \=\alpha \=j)

\bigr) 

\leq | x| 
\alpha i

\bigl( 
Li(x, \alpha i) - L\=j(0, \alpha \=j)

\bigr) 
+ (\Delta t - \=s0)LL\=j

| \alpha \=j  - \=\alpha \=j | .

Using that \alpha i \geq 1, we get that | Li(x,\alpha i)
\alpha i

\leq C. In the same way (using that \alpha i \geq \alpha \=j)

| L\=j(0, \alpha \=j)| 
\alpha i

\leq 1

\alpha i

\bigl( 
L\=j(0, 0) + LL\=j

| \alpha \=j | 
\bigr) 
\leq L\=j(0, 0) + LL\=j

| \alpha \=j | 
\alpha i

\leq C.

Finally, using the definition of \alpha \=j , we observe that

(\Delta t - \=s0)| \alpha \=j  - \=\alpha \=j | = | x| | \alpha \=j | 
\alpha i

\leq | x| .

Injecting these estimates into (49), we obtain w(tn, x) - w(tn, y) \leq C| x| = Cd(x, y).

Appendix C. Proof of Theorem 4.2.

Proof. The proof is made by induction assuming that for n \geq 1

(50) | wn - 1(x) - u(tn - 1, x)| \leq (n - 1)C\Delta x \forall x \in J\Delta x.

Note that the thesis is clearly satisfied for n = 1. We then want to show that

| wn(x) - u(tn, x)| \leq nC\Delta x \forall x \in J\Delta x.

From Proposition 2.1, we know that

(51) u(tn, x) := inf
y\in J

inf
(X(.),\alpha (.))\in \Gamma tn,x

tn - 1,y

\Biggl\{ 
u(tn - 1, y) +

\int tn

tn - 1

L(X(\tau ), \alpha (\tau ))d\tau 

\Biggr\} 
,

where we use the notation L(X(\tau ), \alpha (\tau )) \equiv Li(\alpha i) if X(\tau ) \in Ji (see (A4)).
We denote \=\alpha = (\=\alpha 0, \=\alpha 1, . . . , \=\alpha N ) and by \=s0 the optimal argument of S[wn - 1](x),

and we treat only the case where x \in Ji\setminus \{ 0\} and | x| /\=\alpha i < \Delta t (this corresponds to
the more difficult case in which the optimal trajectory crosses the junction). We also
denote by \=X(t) (with t \in [tn - 1, tn]) the trajectory obtained applying the control \=\alpha .

Clearly such a trajectory belongs to \Gamma tn,x

tn - 1, \=X(tn - 1)
with \=X(tn - 1) =

\bigl( 
\Delta t  - s0  - | x| 

\=\alpha i

\bigr) 
ej

and

(52)

\left\{ 
      
      

\=X(t) \in Ji for t \in 
\Bigl[ 
tn  - | x| 

\=\alpha i
, tn

\Bigr) 
,

\=X(t) = 0 for t \in 
\Bigl[ 
tn  - | x| 

\=\alpha i
 - \=s0, tn  - | x| 

\=\alpha i

\Bigr) 
,

\=X(t) \in Jj for t \in 
\Bigl[ 
tn - 1, tn  - | x| 

\=\alpha i
 - \=s0

\Bigr] 
.
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Therefore,

u(tn, x) - wn(x)

= inf
y\in J

inf
(X,\alpha )\in \Gamma tn,x

tn - 1,y

\Biggl[ 
u(tn - 1, y) +

\int tn

tn - 1

L(X(\tau ), \alpha (\tau ))d\tau 

\Biggr] 
 - S[wn](x)

\leq u(tn - 1, X(tn - 1)) +

\int tn

tn - 1

L(X(\tau ), \alpha (\tau ))d\tau  - S[wn](x)

\leq u(tn - 1, X(tn - 1)) - \BbbI [wn - 1]( \=X(tn - 1))| 

+

\int \Delta t - | x| 
\=\alpha i

 - \=s0

0

L( \=X(\tau ), \=\alpha (\tau ))d\tau  - 
\biggl( 
\Delta t - \=s0  - 

| x| 
\=\alpha i

\biggr) 
Lj(\=\alpha j)

+

\int \Delta t - | x| 
\=\alpha i

\Delta t - \=s0 - | x| 
\=\alpha i

L( \=X(\tau ), \=\alpha (\tau ))d\tau  - s0L0(\=\alpha 0) +

\int \Delta t

\Delta t - | x| 
\=\alpha i

L( \=X(\tau ), \=\alpha (\tau ))d\tau  - | x| 
\=\alpha i
Li(\=\alpha i).

Since L(., \alpha ) is constant in time, the cost terms cancel. Moreover, using standard
interpolation operator properties and (50), we observe that

u(tn - 1, X(tn - 1)) - \BbbI [wn - 1]( \=X(tn - 1))| 
= u(tn - 1, X(tn - 1)) - \BbbI [u(tn - 1, \cdot )](X(tn - 1)) + (n - 1)C\Delta x

+ \BbbI [u(tn - 1, \cdot ) - (n - 1)C\Delta x](X(tn - 1)) + \BbbI [wn - 1]( \=X(tn - 1)) \leq nC\Delta x,

and consequently
u(tn, x) - wn(x) \leq nC\Delta x.

For the inverse inequality, we invert the whole argument. An additional difficulty
arises in choosing the good control for the S[wn - 1] term. We proceed considering
a continuous optimal control \=\alpha (\cdot ) for u(tn, x) in (51). Without loss of generality we
assume that the associated trajectory \=X(t) is such that

(53)

\left\{ 
 
 

\=X(t) \in Ji for t \in (\=t2, tn] ,
\=X(t) = 0 for t \in (\=t1, \=t2] ,
\=X(t) \in Jj for t \in [tn - 1, \=t1] .

Indeed, we can exclude that an optimal trajectory passes in another arc or touches
multiple times the junction point thanks to the convexity of the functions L. In fact,
in such cases, it would be necessary for an optimal trajectory to pass twice for the
same point, i.e., X(\~t1) = \~x and X(\~t2) = \~x, with X(t) \not = \~x for t \in (\~t1, \~t2). This means
that since \.X(t) = \=\alpha (t), we have that

\int \~t2

\~t1

\=\alpha (\tau )d\tau = X(\~t1) - X(\~t2) = 0.

Then the average control on [\~t1, \~t2] is zero. Using the strict convexity and Jensen's
inequality, we find that the optimal control \=\alpha should be zero. This contradicts the
definition of X.

We can now build a discrete control and an associated trajectory (\^\alpha , \^X) for
S[ \^\varphi ](x) such that

\^\alpha i =
| x| 

tn  - \=t2
=

1

tn  - \=t2

\int tn

\=t2

\=\alpha i(\tau )d\tau , \^s0 = \=t2  - \=t1,
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\^\alpha j =
1

\=t1  - tn - 1

\int \=t1

tn - 1

\=\alpha j(\tau )d\tau .

Then by construction \^X(tn - 1) = \=X(tn - 1) and

S[wn - 1](x) - u(tn, x) = S[wn - 1](x) - u(tn - 1, y) +

\int tn

tn - 1

L( \=X(\tau ), \=\alpha (\tau ))d\tau 

\leq \BbbI [wn - 1]( \^X(tn - 1)) - u(tn - 1, \=X(tn - 1)) + (\Delta t - \=t2)Li(\^\alpha i) - 
\int \Delta t

\=t2

L( \=X(\tau ), \=\alpha (\tau ))d\tau 

+

\Biggl( 
(\=t2  - \=t1)L0  - 

\int \=t2

\=t1

L( \=X(\tau ), \=\alpha (\tau ))d\tau 

\Biggr) 
+

\Biggl( 
\=t1Lj(\^\alpha j) - 

\int \=t1

tn - 1

L( \=X(\tau ), \=\alpha (\tau ))d\tau 

\Biggr) 
.

Using Jensen's inequality, knowing that the L-functions are convex, we get

\=t1Lj(\^\alpha j) - 
\int \=t1

tn - 1

L( \=X(\tau ), \=\alpha (\tau ))d\tau 

= \=t1Lj

\Biggl( 
1

\=t1  - tn - 1

\int \=t1

tn - 1

\=\alpha j(\tau )d\tau 

\Biggr) 
 - 
\int \=t1

tn - 1

Lj(\=\alpha j(\tau ))d\tau 

\leq 
\int \=t1

tn - 1

Lj(\=\alpha j(\tau ))d\tau  - 
\int \=t1

tn - 1

Lj(\=\alpha j(\tau ))d\tau = 0.

The two other cost terms can be treated in a similar way. Using that

\BbbI [wn - 1]( \^X(tn - 1)) - u(tn - 1, \=X(tn - 1)) \leq \BbbI [wn - 1]( \^X(tn - 1))

 - \BbbI [u(tn - 1, \cdot ) + (n - 1)C\Delta x]( \=X(tn - 1)) + \BbbI [u(tn - 1, \cdot )]( \=X(tn - 1))

+ (n - 1)C\Delta x - u(tn - 1, \=X(tn - 1)) \leq nC\Delta x

for the basic properties of the interpolation operator and (50), we can claim that

wn(x) - u(tn, x) \leq nC\Delta x,

and this concludes the proof.
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