This work investigates a nonlinear passive control strategy designed to reduce the peak accelerations in ropeway roller batteries systems by deploying an array of nonlinearly visco-elastic vibration absorbers. The control effectiveness is compared with that of an equivalent array made of linearly visco-elastic absorbers. A nonlinear parametric model describing the interactions between the different parts of this mechanical multibody system previously developed by the present authors is here extended to include the passive vibration control system aimed to mitigate the acceleration peaks induced by the vehicles transit at different operational speeds. To this aim, a set of linearly visco-elastic vibration absorbers is first optimized through the Differential Evolution (DE) algorithm seeking to minimize the area below the frequency-response curves of the linear equations of motion. Then, a new group of nonlinearly visco-elastic absorbers, that can be largely tuned (i.e., they can exhibit either softening or hardening behaviors), is proposed to mitigate the accelerations induced in the roller by the vehicle transit. These nonlinearly visco-elastic absorbers are optimized by means of the DE algorithm and comparisons with the control achieved by the linear absorbers are carried out to show the higher performance of the proposed nonlinear device. A possible design of the nonlinearly visco-elastic absorber, based on the hysteresis of a wire rope assembly undergoing flexural cycles, is also proposed and discussed.

Nonlinear vibration absorbers for ropeway roller batteries control / Carboni, B.; Arena, A.; Lacarbonara, W.. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART C, JOURNAL OF MECHANICAL ENGINEERING SCIENCE. - ISSN 0954-4062. - (2020), pp. 1-15. [10.1177/0954406220953454]

Nonlinear vibration absorbers for ropeway roller batteries control

Carboni B.
;
Arena A.;Lacarbonara W.
2020

Abstract

This work investigates a nonlinear passive control strategy designed to reduce the peak accelerations in ropeway roller batteries systems by deploying an array of nonlinearly visco-elastic vibration absorbers. The control effectiveness is compared with that of an equivalent array made of linearly visco-elastic absorbers. A nonlinear parametric model describing the interactions between the different parts of this mechanical multibody system previously developed by the present authors is here extended to include the passive vibration control system aimed to mitigate the acceleration peaks induced by the vehicles transit at different operational speeds. To this aim, a set of linearly visco-elastic vibration absorbers is first optimized through the Differential Evolution (DE) algorithm seeking to minimize the area below the frequency-response curves of the linear equations of motion. Then, a new group of nonlinearly visco-elastic absorbers, that can be largely tuned (i.e., they can exhibit either softening or hardening behaviors), is proposed to mitigate the accelerations induced in the roller by the vehicle transit. These nonlinearly visco-elastic absorbers are optimized by means of the DE algorithm and comparisons with the control achieved by the linear absorbers are carried out to show the higher performance of the proposed nonlinear device. A possible design of the nonlinearly visco-elastic absorber, based on the hysteresis of a wire rope assembly undergoing flexural cycles, is also proposed and discussed.
2020
Hysteretic absorbers; nonlinear TMD; roller battery; ropeways; vibration control
01 Pubblicazione su rivista::01a Articolo in rivista
Nonlinear vibration absorbers for ropeway roller batteries control / Carboni, B.; Arena, A.; Lacarbonara, W.. - In: PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS. PART C, JOURNAL OF MECHANICAL ENGINEERING SCIENCE. - ISSN 0954-4062. - (2020), pp. 1-15. [10.1177/0954406220953454]
File allegati a questo prodotto
File Dimensione Formato  
Carboni_Nonlinear_2019_Postprint.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1453626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 13
social impact