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Abstract
This work investigates a nonlinear passive control strategy designed to reduce the peak accelerations in ropeway roller
batteries systems by deploying an array of nonlinearly visco-elastic vibration absorbers. The control effectiveness is
compared with that of an equivalent array made of linearly visco-elastic absorbers. A nonlinear parametric model describing
the interactions between the different parts of this mechanical multibody system previously developed by the present authors
is here extended to include the passive vibration control system aimed to mitigate the acceleration peaks induced by the
vehicles transit at different operational speeds. To this aim, a set of linearly visco-elastic vibration absorbers is first optimized
through the Differential Evolution (DE) algorithm seeking to minimize the area below the frequency-response curves of the
linear equations of motion. Then, a new group of nonlinearly visco-elastic absorbers, that can be largely tuned (i.e., they can
exhibit either softening or hardening behaviors), is proposed to mitigate the accelerations induced in the roller by the vehicle
transit. These nonlinearly visco-elastic absorbers are optimized by means of the DE algorithm and comparisons with the
control achieved by the linear absorbers are carried out to show the higher performance of the proposed nonlinear device. A
possible design of the nonlinearly visco-elastic absorber, based on the hysteresis of a wire rope assembly undergoing flexural
cycles, is also proposed and discussed.

Keywords
Hysteretic absorbers, ropeways, vibration control, roller battery, nonlinear TMD

Introduction

Ropeways are cable-based transportation systems, adopted
both in urban environment and mountain regions or
sightseeing areas [1]. These systems are becoming a valid
alternative to classical public transportation solutions. Yet to
become more competitive, they require new design criteria so
as to increase the number of passengers and their operational
speeds. Such cableways are typically classified according to
different geometric and mechanical characteristics such as
the number of cables, the actuation system, the vehicle size
and the mechanism to get in and out from the station [2, 3].
Among them, mono-cable ropeways are an effective solution
to cover long distances when small cabin sizes are employed.
The studies present in the literature are mainly focused on
the dynamic response of the vehicles to cross-wind loading
and other dynamic effects [4, 5]. A few works analyze the
coupling between the cable motion and the swaying motion
of the traveling vehicles [6]. Moreover, the investigation
of the dynamical behavior is restricted to the evaluation
of the roller battery natural frequencies and the interaction
between rollers, cable, tower and vehicle is not taken into
account [7]. Analytical approaches via parametric modeling
were successfully adopted for modeling and predicting the
response of cable-driven systems such as container cranes,
and for designing passive vibration control devices [8, 9, 10]
to mitigate their oscillations.

By taking into account the nonlinear parametric model
of ropeways compression roller batteries which was
theoretically proposed and experimentally validated by the
authors in [11, 12], a number of vibration absorbers is

deployed on the different stages of the roller battery system
to mitigate the accelerations due to the vehicle transit. The
three stages of the roller battery system are depicted in Fig.
1 where the roller battery suspension point C on the tower-
supported hoisting beam is the center of rotation for stage 1,
B1 and B2 are the centers of rotation for the second stage,
(A1, A2, A3, A4) are the centers of rotation for the third
stage made of four pairs of sheaves.

A4 A3 A2 A1

B2 B1C Stage 1 Stage 2

Stage 3Sheave

Figure 1. Top view of the roller battery with the three
hierarchical stages and the sheaves.

Linear and nonlinear visco-elastic absorbers (VAs), are
investigated and compared in this work. Moreover, the
effectiveness of a newly conceived nonlinear control device
is studied. The proposed model introduces a modulation of
the stiffness and damping across the force-displacements
cycles which can exhibit an asymptotically limited softening
or hardening behavior. This is obtained by means of
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Figure 2. (a) Schematic representation of the
cable-vehicle-roller battery assembly including the vibration
absorbers arrangement. (b) Geometric characteristics of the
grip.

displacement-dependent exponential functions adopted to
model both the elastic stiffness and the viscous damping.
Given the nonstationary nature of the dynamic loads induced
by the transit of vehicles, instead of using the well-known
formulas for the optimal linear TMDs tailored for purely
harmonic excitations, the parameters of the visco-elastic
absorbers are here evaluated performing an optimization
based on the Differential Evolution (DE) algorithm [13,
14, 15, 16, 17] which makes use of the frequency-response
curves (FRCs) of the linearized equations of motion. The
target of the optimization consists in the mitigation of the
accelerations induced by skew-symmetric and nonsymmetric
point-force distributions, respectively, acting on the roller
battery sheaves. The optimal parameters obtained by making
use of the linear FRCs are employed to identify the ranges in
the optimization space of the mechanical parameters ruling
the nonlinear visco-elastic absorbers. A DE algorithm-based
optimization is carried-out to evaluate the parameters of the
nonlinear absorbers delivering the best accelerations control
in the case of high speed vehicle transit. A comparison
between the performance of the linear and the nonlinear
absorbers is shown and discussed. A possible design of the
nonlinearly visco-elastic device, based on the preliminary
results obtained in [18], capable of reproducing the desired
nonlinear behavior is also proposed.

Dynamic model of the cable-vehicle-roller
battery assembly with the VAs
The mechanical system here investigated is based on the
parametric nonlinear formulation first proposed in [12]. The
model takes into account the multibody assembly consisting
of four interacting mechanical subsystems, namely, the
elastic cable traveling along the ropeway line, the vehicle
attached to the cable, the roller battery, and the hoisting
beam connected to the tower (see Fig. 2). Moreover, the
cable-rollers configuration investigated in this work refers to
the so-called compression roller battery architecture, where
the propelling cable moves below the rollers which are thus
compressed against the hoisting beam.

The mentioned four substructures, interacting dynamically
with each other, differ substantially in their mechanical
behavior. In particular, the cable is an elastic one-
dimensional (1D) continuum which carries transverse loads
by means of tensile forces tangent to the cable configuration.

On the other hand, the roller battery is a mechanism
composed by rigid bodies (i.e., the rollers) rigidly connected
to each other by means of hierarchical balancers rotating
around moving hinges, and globally, around the master hinge
fixed to the tip of the hoisting beam (see Fig. 1). The hoisting
system, which connects the roller battery to the top part of the
tower, is modeled as an equivalent 1D Euler beam element
undergoing bending deflections. Finally, the vehicle behaves
like a pendulum whose support is fixed to the moving
cable and the equivalent vehicle mass is connected to the
supporting arm via linearly visco-elastic supports positioned
atop the vehicle. The connection between the vehicle and the
cable is provided by the grip (see Fig. 2(b)), a mechanical
element that works as a wedge and allows the vehicle transit
below the rollers. The grip thus represents the interface
through which dynamical interactions between the vehicle,
the cable, and the roller battery occur.

The proposed mechanical model allows the investigation
of the incremental dynamic response of the roller battery
due to the vehicle transit across it. Due to the symmetry
of the problem and the mechanical constraints of the roller
battery, the motion of the system is assumed to be restrained
within the plane containing the vertical (gravity) direction
and the longitudinal (moving) direction. By considering the
schematic representation of the roller battery depicted in Fig.
2, let (eo

1, e
o
2) be the fixed frame, having its origin in the

hinge C and having eo
2 collinear with the vertical direction

and eo
1 with the longitudinal direction. A further fixed frame

(e1, e2), centered in C, is oriented along the roller inclined
direction and is thus rotated counterclockwise with respect
to eo

1 by the angle ϕR.

Kinematic description
The rollers assembly is made of four pairs of rollers, here
modeled as rigid bodies, which rotate about the hinges
denoted byAj (j = 1, . . . , 4) (see Fig. 1), while each couple
of two rollers rotates about the hinges denoted by Bk (k =
1, 2). Finally, the main hinge C is connected to the hoisting
system and allows the eight rollers to rotate about the tip of
the cantilever beam. The latter is modeled as an equivalent
Euler-Bernoulli cantilever beam whose length Lb, bending
stiffness EbIb, and mass ρAb are determined so as to reflect
the static and dynamic flexural behavior of the actual elastic
structure connecting the roller battery to the tower.

Although the cable is the moving structural element of the
system (i.e., the vehicle is propelled by the moving cable
itself), the same modeling approach experimentally validated
in [12] is here adopted. Thus the vehicle is modeled as a
visco-elastic pendulum traveling across a stationary cable
segment modeled as a prestressed string. This assumption
is justified by the relatively low transit speeds. The
equivalent string length Leq = L1 + L2 + L3 (see Fig. 2)
was determined via an ad hoc experimental identification
procedure described in [12], while Lcab indicates the arm
of the vehicle equivalent pendulum. Finally, the passive
vibration absorbers (VA) are modeled as lumped masses
connected through a rheological device to the roller battery
at Aj , Bk, and C, respectively. In particular, the examined
vibration absorbers take into account visco-elastic devices
and nonlinearly visco-elastic devices, so as to compare the
relative effectiveness for this nonstandard application. In

Prepared using sagej.cls



Carboni, Arena and Lacarbonara 3

particular, the nonlinear visco-elastic behavior is modeled
according to a new model here proposed.

The roller battery degrees of freedoms (DOFs) are the
rotations θAj (t), θBk(t), and θC(t), about hinges Aj , Bk,
and C, respectively. Therefore, the current configuration of
the roller battery can be described by the vectors rPi(t),
rAj (t), rBk(t), and rC(t) which provide at time t the
positions of the cable contact points Pi (i = 1, . . . , 8) and
those of the hinges Aj (j = 1, . . . , 4), Bk (k = 1, 2) and
C, respectively. On the other hand, the vehicle DOFs are
denoted by b(t) and θcab(t) which indicate the elongation
of the suspension system positioned atop the vehicle and the
rotation about the suspension point at the grip, respectively.
The vehicle moves along the cable at speed vT and the
position at time t of its center of mass is given by the vector
rG(t) while the position of the grip is described by the
position vector rT (t).

To discretize the time- and space-dependence function
v(x, t) representing the vertical displacement of the hoisting
cantilever beam centerline, the Galerkin method is adopted
and a suitable number Nl of trial functions is employed
to describe the dynamics of the beam-like subsystem. In
particular, the lowest Nl mode shapes ψl(x) of the cantilever
beam are employed to spoace-discretize the beam deflection
while the functions ηl(t) (l = 1, . . . , Nl) are introduced
as time-dependent generalized coordinates. Therefore, the
beam deflection can be written as v(x, t) ≈

∑Nl
l=1 ψl(x)ηl(t)

and the vertical displacement of point C turns out to be
vC(t) = v(Lb, t) ≈

∑Nl
l=1 ψl(Lb)ηl(t).

On the other hand, due to the multiple contact points
Pi (i = 1, . . . , 8) between the cable and the roller battery,
the cable discretization is carried out according to the
finite element (FE) technique. In particular, ne = 20 finite
elements are used to divide the cable length such that each
contact point Pi coincides with a finite element node while
the cable support points are the boundary nodes. First-
order Lagrangian polynomials are employed to discretize the
cable transversal displacement and to describe the kinematic
function for the eth element. The latter can be written as
we(ξ, t) = Ne(ξ)TeX(t), where the subscript e indicates
the element, ξ is the local arclength, Ne(ξ) is the 1× 2
vector collecting the shape functions for each element nodes,
X(t) is the vector of the nodal degrees of freedom, having
size (ne + 1)× 1, and Te is the 2× ne extraction matrix.
Finally, due to the cable fixed boundary conditions, it turns
out that X1(t) = Xne+1(t) = 0. The total number of DOFs
for the described system is equal to 34.

The unilateral contacts at points Pi (i = 1, . . . , 8) between
the rollers and the cable are modeled by introducing fictitious
springs collocated at each point Pi. These springs behave
as internal elastic constraints whose stiffness Ki is suitably
tuned in order to simulate a quasi-rigid behavior. The grip
interaction with the rollers, arising from the vehicle transit,
is reproduced by imposing a history of relative displacements
between each roller and the cable defined according to a
smoothed trapezoidal-in-time function derived from the grip
shape and to the transit speed vT . In particular, the prescribed
upward displacement gu(t) and the downward displacement

gd(t) of each roller, due to the passage of the grip, read:

gu(t) = hcMin + t tan θ0 +
4

lc21

[
3 (hcMax − hcMin) vT

− lc1 tan θ0
]
vT t

2 − 4

lc31

[
4 (hcMax − hcMin) vT

− lc1 tan θ0
]
v2T t

3,

gd(t) =
1

vT (lc− lc2)
3{

vT

[
hcMin (5 lc− lc2 − 4 vT t) (lc+ lc2 − 2 vT t)

2

−4 hcMax (lc+ 3 lc2 − 4 vT t) (lc− vT t)2
]

+ (lc− lc2) (lc+ lc2 − 2 vT t)
2

(lc− vT t) tan θ0

}
.

(1)
Finally, the rollers kinematics prescribed by the vehicle
transit and the grip interaction are described by the following
expression:

hi(t) =
(
H(t− τPi − τ0)−H(t− τPi − τ1)

)
gu(t− τPi)

+
(
H(t− τPi − τ1)−H(t− τPi − τ3)

)
hcMax

+
(
H(t− τPi − τ3)−H(t− τPi − τf )

)
gd(t− τPi) ,

(2)
where H is the Heaviside function, τ0 = 0, τ1 = τ0 + lc1

2 vT
,

τ3 = τ0 + 1
2 vT

(lc+ lc2), τf = τ0 + lc
vT

, and τPi represent
the transit times below the ith roller Pi. The values of the
geometric and mechanical parameters presented in Eqs. (1)
and (2) can be found in [12].

The vibration absorbers are positioned at the hinges Aj ,
Bk and C, respectively. Such positioning is justified by the
need of controlling the second stage (absorbers in Aj) and
the first stage (absorbers in Bk) and the suspension point C
(absorber in C). The third stage is not directly controllable.
The current configuration of the oscillating absorber masses
is described in terms of the displacements δAj and δBk ,
along the directions e

Aj
2 and eBk2 orthogonal to the roller

inclined configuration, and δC along the vertical direction
eo
2, respectively. Hence, the position of the VA masses can

be described, in the fixed frame (e1, e2), by the following
vectors:

rδAj (t) = rAj + δAj RθBk
· eAj2 ,

rδBk (t) = rBk + δBk RθC · e
Bk
2 ,

rδC (t) =
(
vC(Lb) + δC

)
RϕR · eo

2

(3)

where RθBk
and RθC are the orthogonal matrices describing

the rotations with respect to the hinges Bk and C,
respectively, while RϕR rotates eo

2 into the fixed frame
(e1, e2). On the other hand, at time t the current
configuration of the roller battery is described by the vectors
rPi(t), rAj (t), rBk(t), and rC(t) providing the positions Pi
(i = 1, . . . , 8), Aj (j = 1, . . . , 4), Bk (k = 1, . . . , 2) and C,
respectively, in the fixed frame (e1, e2).

Equations of motion
The equations of motion governing the nonlinear dynamics
of the roller battery including the passive control system can
be obtained starting from the computation of the Lagrangian
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of the mechanical system. To this end, the kinetic energy
T (t) and the total potential energy V (t) are first calculated
as

T (t) = Tb(t) + Tcab(t) + TR(t)

+

Nδ∑
n=1

Tδn(t) +

ne∑
e=1

Tc,e(t)
(
H(t− τe)−H(t− τe+1)

)
,

V (t) = Vb(t) + Vc(t) + Vel,cab(t) + Vfict(t)

+

Nδ∑
n=1

Vδn(t)− Vg,cab(t),

(4)
where Vg,cab(t) is the potential energy of the cabin while
Vel,cab(t) and Vfict(t) are the elastic energies due to
the cabin suspension system and the fictitious springs,
respectively. Moreover, Vb(t), Vc(t), and Vδn(t) are the
potential energies associated with the beam, the cable, and
the nth VA, respectively, while Nδ is the total number
of VAs. Finally, Tb(t), Tcab(t), TR(t), Tδn(t), and Tc,e(t)
are the kinetic energies of the beam, the cable, the rollers
system, the nth VA and the cabin passing across the eth finite
element, respectively. The full expressions of each term in
Eq. (4) can be found together with detailed comments in [12].

Finally, to model the energy dissipation due to the
presence of the vibration absorbers, the two cases of
linearly visco-elastic absorbers and nonlinearly visco-elastic
absorbers are considered. In particular, in the first case,
the Rayleigh dissipation function is considered to account
for the viscous damping forces, while for the nonlinearly
visco-elastic devices, a new rheological model is adopted to
describe the restoring and dissipative forces. Therefore, once
the system Lagrangian, L(t) = T (t)− V (t), is computed,
the equations of motion can be written as

d

dt

(
∂L

∂q̇m

)
− ∂L

∂qm
+ dm q̇m =

Nδ∑
n=1

P
(m)
δn

, (5)

where d
dt and the overdot indicate total differentiation with

respect to time t, qm is the mth component of the vector
collecting the system degrees of freedom, namely, q = [θA1

θA2
θA3

θA4
θB1

θB2
θC θcab b X2 . . . Xne η1 . . . ηNl

δA1
. . . δA4

δB1
δB2

δC ]
>, and dm is the equivalent linear

damping coefficient for each degree of freedom. In the case
of linearly visco-elastic absorbers, the expression of the
potential energy assumes the classical form Vδn(t) = 1

2kn q
2
n

(n = 1, . . . , Nδ), while the nonlinear restoring force of the
absorbers can be obtained from the variation of the potential
energy defined as follows

Vδn(t) =
1

2
kn

(
q2n + ξk,nx

2
k,n e

−q2n/x
2
k,n

)
. (6)

Moreover, in Eq. (5) dm is the equivalent linear damping
coefficient for each roller battery degree of freedom,
while P

(m)
δn

is the mth generalized component of the
nth VA viscous force; it turns out that dm = 0 when
m = (9 + ne +Nl + 1), . . . , Nδ , and P (m)

δn
= 0 when m =

1, . . . , (9 + ne +Nl). On the other hand, the Lagrangian
force P

(m)
δn

has the classical Rayleigh-type expression,

P
(m)
δn

= −dn q̇n (n = 1, . . . , Nδ), in the case of linear

VA, while, for the nonlinearly visco-elastic absorbers,
the viscous damping force, the following displacement-
dependent nonlinear relationship holds:

P
(m)
δn

= −dn
(

1− ξd,ne−q
2
n/x

2
d,n

)
q̇n. (7)

In Eq. (6) kn denotes the elastic stiffness of the VA, while
in Eq. (7) dn is the equivalent linear damping coefficient of
each VA.

The constitutive parameters ξk,n ∈ (−1, 1) and ξd,n ∈
(−1, 1) regulate the nonlinear contributions to of the elastic
stiffness and the viscous damping forces, respectively.
Depending on the sign of ξk,n, it is possible to confer a
softening or a hardening behavior to the VAs; on the other
end, the sign of ξd,n regulates the rate of energy dissipation
of the VAs. In particular, a positive value of ξd,n produces
pinching in the hysteresis cycle, thus it reduces the rate of
dissipation at low displacements (i.e., in the neighborhood of
the origin of the force-displacement diagram). In the present
work, it is assumed xk,n = xd,n = xn. It is a matter of fact
that, by properly tuning the parameters associated with the
nonlinear constitutive behavior of the VAs, the here proposed
rheological model allows to design the nonlinearity of the
absorbers so as to optimize their control authority over the
structure with its peculiar nonlinearities to which the VAs
are mounted.

Figure 3 shows the restoring force of the proposed
nonlinearly visco-elastic absorber in the case of softening
behavior and assuming kn = 1, dn = 0.01 and xn = 0.5; the
cycles are generated for an assigned sinusoidal displacement
with amplitude equal to 1 and circular frequency equal to
2π. In Fig. 3 (top) ξk,n = ξd,n = −0.9 and the softening
behavior is associated with a viscous damping coefficient
decreasing along the loading branch and determining a larger
rate of dissipation around the origin. In Fig. 3 (bottom),
where ξk,n = −0.9, ξd,n = 0.9, the softening behavior is
associated with a viscous damping coefficient increasing
along the loading branch and determining a pinching of
the cycle around the origin. The hardening case is reported
in Fig. 4 by considering kn = 1, dn = 0.01 and xn = 0.5.
Figure 4 (top) is obtained for ξk,n = 0.9 and ξd,n = −0.9
while in Fig. 4 (bottom) ξd,n = 0.9.

The equations of motion are then nondimensionalized by
adopting ωc =

√
EbIb/ρAbL4

b as characteristic frequency
and the equivalent hoisting beam span Lb as characteristic
length, respectively. The nondimensional semi-lengths of
the balancers are assumed equal to 0.505, 0.252 and
0.126 for the 1st, 2nd and 3nd stage, respectively. The
distances (orthogonal to the balancers in the vertical plane)
between the hinges (C,Bk, Aj) and center of the sheaves,
in the reference configuration, are 0, 0.0077 and 0.023,
respectively. Moreover, the spans L1, L2 and L3 are 0.177,
1.19 and 0.88, respectively (see Fig. 2 (a)). The inclination
angle is assumed to be ϕR = −0.253 rad. The geometric
parameters of the grip are hC,Min = 0, hC,Max = 0.022,
lC = 0.431, and lC2 = 0.077 (see Fig. 2 (b)) while the cabin
equivalent length Lcab = 1.19. The nondimensional lumped
cabin mass is 1.05 and the masses of the roller stages are
0.055 (at the center of the first and last sheave), 0.0416
(for the other remaining 6 sheaves), 0.0424 (at Aj), 0.0585
(at Bk), 0.0152 (at C). The cable nondimensional mass per
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Figure 3. Nonlinearly visco-elastic force-displacement cycles in
the softening case setting kn = 1, dn = 0.01, xn = 0.5 and
ξk,n = ξd,n = −0.9 (top) and ξd,n = 0.9 (bottom).

unit of length is 0.031 while the nondimensional tensile
force in the reference configuration is equal to 0.009. The
nondimensional stiffness of the fictitious springs simulating
the interaction between the cable and the rollers is set to
0.107, while the nondimensional values of the stiffness and
the equivalent damping ratio of the connection between
cabin and suspension arm are equal to 0.074 and 7.0%,
respectively. Finally, the damping ratio for the pendular
motion of the cabin is set to 8.0%. The numerical simulations
are carried out considering Nl = 4 trial functions for the
hoisting beam discretization, ne = 20 finite elements for
the cable, while the total number of VAs is Nδ = 7. The
mechanical and geometric properties of the roller battery
assumed in this work are taken in consonance with the
numerical and experimental results reported in [11, 12].

Linear modal properties of the system
To start with, a modal analysis is performed in order to
evaluate the natural frequencies and the mode shapes of the
system. Moreover, the modal masses are estimated according
to the translational and rotational masses associated with
each DOF of the system. To this end, the eigenvalue
problem is studied neglecting the presence of the vehicle
to understand the system modal sequence and frequencies
spacing. It is also worth noting, that the geometric
nonsymmetry of the system (L1 < L3, see Fig. 2) implies
nonperfectly symmetric or skew-symmetric mode shapes.
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Figure 4. Nonlinearly visco-elastic force-displacement cycles in
the hardening case setting kn = 1, dn = 0.01, xn = 0.5,
ξk,n = 0.9 and ξd,n = −0.9 (top) and ξd,n = 0.9 (bottom).

Figures 5 and 6 show the modal coordinate contributions
and the associated modal configurations of the lowest two
modes of the system. To better understand the contribution of
each generalized coordinate in the mode shapes of the roller
battery, different colors are associated to each coordinate;
in particular, red, orange and magenta refer to the rollers
rotations θAj , θBk , and θC , respectively, while blue and
gray indicate the cable nodal DOFs listed in the vector X
and the beam generalized coordinates ηl, respectively. As
depicted in Fig. 5, the lowest mode shape is skew-symmetric,
with a nondimensional frequency equal to 0.059. The rollers
rotate and are accompanied by nonnegligible rotations of
the second and first stages; the latter denoted by θC (its
presence characterizes all skew-symmetric modes) ensures
that the hinge C is the point of skew-symmetry of the system
mode shapes. On the other hand, the second mode shape
shown in Fig. 6, having nondimensional frequency equal
to 0.092, is symmetric and shows the inner and the outer
pairs of symmetric rollers undergoing opposite rotations of
similar magnitude, while the second stages undergo equal
and opposite rotations. Moreover, it is worth noting that
the modal participation of the beam connected at C to the
roller battery becomes significant only for the eighth mode
(f̄ = 0.279) characterized by a symmetric shape as shown in
Fig. 7.

The damping ratios corresponding to each DOF of the
system are: ζAj = 4.5% (j = 1, . . . , 4), ζBk = 3.8% (k =
1, 2), ζC = 3.8%, while, for the supporting beam and
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Rollers Cable Beam

Figure 5. Lowest mode shape of the cable-tower-roller battery
system.

Rollers Cable Beam

Figure 6. Second mode shape of the cable-tower-roller battery
system.

the cable, the equivalent damping ratios are 2.2% and
1.5%, respectively. The results of the eigenvalues analysis
are shown in Tab. 1, where the nondimensional natural
frequencies f̄ , the associated nondimensional masses M̄ ,
damping ratios ζ, and stiffnesses K̄ are reported for the
lowest nine modes. The modal hierarchy of the system can be
described as follows: the lowest modes are mainly associated
with the rotation θC followed by the modes corresponding to
the rotations θB1 , θB2 and θA2 , θA3 , θA1 , θA4 . On the other
hand, the eighth mode involves predominantly the dynamics
of the hoisting beam.

Vibration control of the roller battery
Due to the size of the structural elements within the roller
battery, feasible collocations of the VAs are found atop the
hinges Aj , Bk, and C, respectively (see Fig. 2). Figure 8

Rollers Cable Beam

Figure 7. Eighth mode shape of the cable-tower-roller battery
system.

Table 1. Lowest nine nondimensional natural frequencies,
modal masses, damping ratios, and stiffnesses.

Mode f̄ [-] M̄ [-] ζ [%] K̄ [-]
1 0.059 4.1 · 10−2 1.03 5.8 · 10−3

2 0.092 2.7 · 10−2 1.28 9.1 · 10−3

3 0.116 3.5 · 10−2 1.05 1.9 · 10−2

4 0.152 9.2 · 10−3 1.65 8.5 · 10−3

5 0.162 1.1 · 10−2 1.51 1.1 · 10−2

6 0.176 9.8 · 10−3 1.43 1.2 · 10−2

7 0.185 9.1 · 10−3 1.38 1.2 · 10−2

8 0.279 4.2 · 10−3 0.65 1.3 · 10−2

9 0.315 2.0 · 10−3 0.46 8.3 · 10−3

shows the VAs configuration and highlights the rotational
DOFs of the second stage and the vertical motion of the first
stage to be controlled by the VAs (see also Fig. 1 for a top
view of the roller battery). The devices in Aj have control
authority over the rotations θBk and, in turn, on the rotation
θC and vertical translation of C. The VAs collocated at Bk
work for both the rotation θC(t) and translation of C while
the absorber at C has control authority mainly on the tip
hoisting beam vertical motion and, in turn, on the vertical
motion of the entire assembly. According to this hierarchy,
the VAs positioned at A1, A2, A3 and A4 have the task of
controlling the accelerations of these points whose motion
is mainly due to the rotations θB1 and θB2 , respectively. In
turn, the absorbers at B1 and B2 are expected to mitigate the
accelerations due to the rotation θC . Thus, the VAs masses
are defined considering the roller and cantilever total masses
associated to each DOF. For the devices at Aj , the total
mass is set to 1% of the total rotational mass associated to
θB1 and θB2 . It is equally distributed in the 4 VAs and
the equivalence between rotational and translational mass
is computed according to the rigid arms of the balancers
forming the second stage. Specifically, the translational mass
of each of the 4 absorbers at Aj is assumed equal to 1% of
a quarter of the rotational mass associated to θB1 and θB2
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divided by the square of the distance between the point where
the VA is positioned and the rotation center (i.e. the distance
between A1 or A2 and C1 and the distance between A3 or
A4 and C2). In the same way, the masses of the VAs at B1

and B2 are assumed to be 1% of the total mass associated to
θC . Finally, the mass of the absorber at C is set to 1% of the
translational mass related to the vertical motion of the beam
tip. The VAs translational masses are reported in Tab. 2.

A4

A3

A2

A1

B2
B1C

θB2

θC θB1

Figure 8. Configuration of the VAs and associated rotational
DOFs to be controlled, namely the second stage rotations and
the first stage vertical motion.

Table 2. VAs translational masses.

VAA1
VAA2

VAA3
VAA4

0.00128 0.00128 0.00128 0.00128

VAB1
VAB2

VAC
0.003193 0.003193 0.0166

A preliminary concept design of the nonlinear absorber
is shown in Fig. 9. The device hosted by a cylindrical
enclosure features a mass that can oscillate vertically along
a shaft. A group of steel wire ropes are connected at one
end to the inner wall of the cylinder and at the other end
to some plates connected with the oscillating cylindrical
mass which moves along the vertical shaft fixed to the
cylindrical enclosure ends. The connections between the
wire ropes and the cylinder are such that the wire ropes
are subject only to flexural stresses in order to provide the
desired restoring force according to the design principles
discussed in [18]. Another possibility consists in adopting a
connection that induces tensile forces in the ropes when the
absorber cylindrical mass slides on the shaft. In this case, the
nonlinearly visco-elastic restoring force is characterized by
a strong hardening that can be useful to mitigate the roller
response subject to the impact of the grip. The cylindrical
VAs are rigidly connected to the different stages of the roller
battery.

Optimization of the linear VAs
The VA effectiveness in mitigating the accelerations of the
roller battery components due to the vehicle transit across
the tower is investigated next. The optimal parameters of
the absorbers are estimated according to a simplified linear
analysis based on the configuration which incorporates the
visco-elastic VAs. Two harmonic loading conditions are con-
sidered, the first is given by a system of point-forces Fi(t) =
F (1− 2(8− i)/7) cos Ωt (i = 1, . . . , 8). These forces are
skew-symmetrically distributed across the roller battery and
act at all points Pi (F = 4.14 · 10−7). The second loading
condition given by a nonsymmetric distribution in which the

Figure 9. Preliminary concept design of the nonlinearly
visco-elastic vibration absorber.

force acting at P1 is zero (i.e., F1(t) = 0), while the force at
point P8, F8(t) = 2F cos Ωt. The force acting at Pi can be
written as Fi(t) = 2F (1− (8− i)/7) cos Ωt (i = 1, . . . , 8).

The FRCs are analytically calculated by linearizing
the system of equations about the reference configuration
and computing the frequency response. The adopted VAs
optimization criterion is based on the minimization of the
objective function Λ given by the area subtended by the
FRCs in terms of accelerations of Pi, Aj , Bk, and C:

Λ =

∫ f1

f0

aC df +

2∑
k=1

∫ f1

f0

aBk df

+

4∑
j=1

∫ f1

f0

aAj df +

8∑
i=1

∫ f1

f0

aPi df.

(8)

The terms f0 and f1 are the lower and upper frequency
bounds of the range over which the FRCs of the accelerations
aC , aBk , aAj and aPi are computed. The choice of
minimizing the accelerations over the whole frequency
bandwidth is prompted by the requirement of globally
mitigating the vibrations in the multi-body system. The
parameters to be optimized are represented by the resonance
frequencies and the damping ratios of each absorber and the
associated research spaces are defined according to a normal
distribution around average values.

In accordance with the linear absorbers literature [19, 20],
the optimal frequency and damping ratio are close to those
of the structure to be controlled. For the present system,
we can identify 2 search ranges for the frequency and 2
for the damping ratios. Considering the mechanical coupling
between the rotational DOFs, the research space for the
resonance frequencies of the VAs in Aj and Bk is taken
to cover the range of frequencies associated with the lowest
7 modes (i.e., the rotational modes). On the other end, the
frequency search space for the VA in C is set around the
frequency of the 8th mode (i.e., the translational mode).
The same criterion is employed for the damping ratios. The
parameter population is constituted by 14 rows (number
of parameters) and 25 columns (number of discrete values
assumed in the search space) and the mutation coefficient of
the DE algorithm is set to 0.9. The DE, at each iteration,
generates a new parameter population that is improved
according to the minimization of the Λ (8). The iterations
are stopped when a convergence of the Λ is achieved. A
detailed description of the DE algorithm steps can be found
in [21, 13, 14].
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Two sets of optimal parameters are found for the skew-
symmetric and nonsymmetric loading conditions (see Tab.
3). The computed FRCs in accelerations of P8, A4, B2,
and C, are shown in Figs. 10 and 11, respectively, for
the skew-symmetric loading scenario in the controlled
and uncontrolled configurations, respectively. The same
kind of results concerning P4, A2, B1, and C for the
nonsymmetric load distribution are reported in Figs. 12
and 13, respectively. Figure 14 shows that the normalized
Λ for the skew-symmetric and the nonsymmetric loading
condition converges monotonically to its minimum after only
350 iterations. As shown in Tab. 3, the natural frequencies
of the absorbers optimized for the skew-symmetric loading
condition span the range that covers the lowest five modes of
the uncontrolled system (see Tab. 1) in the case of the VAs
positioned at points Aj and Bk, while the frequency of the
VA positioned in C lies between the frequency of the 8th
and 9th mode of the uncontrolled system. On the other hand,
the natural frequencies of the absorbers optimized for the
nonsymmetric loading condition span in the range that covers
the lowest eight modes for all VAs. In particular, the natural
frequency of the absorber at B1 lies between the frequencies
of the 6th and 7th mode of the uncontrolled system, while
that of the absorber at B2 varies between the frequencies of
the 8th and 9th modes.

The frequency-response curves of the controlled system,
reported in Figs. 10 and 11 for the case of skew-
symmetric loading scenario, show resonance peaks around
the frequency of the lowest uncontrolled mode. This is due
to the large excitation induced by the skew-symmetric point-
loads distribution in the lowest uncontrolled mode which
drives the optimization of the absorbers at A4, B1 and B2

around its natural frequency. On the other hand, the VAs
optimization for the nonsymmetric point-loads (see Figs. 12
and 13) determines FRCs that show a double peak around
almost each of the natural frequencies of the uncontrolled
system.

The modal properties of the roller battery system
including the presence of the VAs, calculated by solving
the corresponding eigenvalues problem, are reported in
Tabs. 4 and 5, for the case of VAs constitutive parameters
optimized for the skew-symmetric and the nonsymmetric
loading scenarios, respectively. It is worth noting that the
optimal damping ratios of the linear VAs positioned at Ai
(i = 1, . . . , 8) assume almost the same value in both loading
conditions, while the absorbers positioned at Bk and C are
optimized with different damping values, and this is due to
the fact that they are tuned to different frequencies.

Optimization of the nonlinear VAs
An effective strategy for performing the optimization
of the nonlinear VAs consists in employing equivalence
relationships for tuning of resonance frequency and damping
with those of the optimal linear VAs obtained according
to the linearized FRCs [22]. However, such approach
does not ensure an overall optimal control performance
considering the transient nature of the excitation. Therefore,
the optimization of the nonlinearly visco-elastic absorbers is
here achieved by performing numerical time integration of
the nonlinear equations of motion including the transit of
the cabin across the roller battery. The optimal parameters

Table 3. Nondimensional optimal resonance frequencies and
damping ratios of the linear visco-elastic VAs for the
skew-symmetric and nonsymmetric point-load distributions,
respectively.

Skew-symmetric Nonsymmetric
VA f̄opt[−] ζopt[%] f̄opt[−] ζopt[%]
A1 0.158 0.69 0.158 0.68
A2 0.115 3.13 0.115 3.10
A3 0.095 3.55 0.095 3.78
A4 0.057 2.62 0.059 2.87
B1 0.063 2.56 0.178 0.78
B2 0.060 2.66 0.321 1.33
C 0.295 5.50 0.281 6.38
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Figure 10. Controlled (black line) vs. uncontrolled (red line)
FRCs of the roller battery points (top) P8 and (bottom) A4 for
the skew-symmetric load distribution on the rollers.

of the nonlinear VAs are computed for the transit of the
vehicle at the nondimensional speed of 0.025 using the
DE algorithm. The selected value of the vehicle speed
is quite larger with respect to the typical value of the
transit speed for passengers transportation. Indeed, higher
transit speeds may cause vibrations amplitude generating
discomfort for passengers or it may cause overstress or
fatigue problems in the ropeway structural elements. The
possibility of mitigating the accelerations induced in the
roller battery can be then a valid solution for increasing the
running speeds while preserving the structural integrity.
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Figure 11. Controlled (black line) vs. uncontrolled (red line)
FRCs of the roller battery points (top) B2 and (bottom) C for the
skew-symmetric load distribution on the rollers.
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Figure 12. Controlled (black line) vs. uncontrolled (red line)
FRCs of the roller battery points (top) P4, (bottom) A2 for the
nonsymmetric load distribution on the rollers.

The network of the nonlinear VAs is optimized by the
minimization of the following objective function:

Γ =

∫ tf

t0

|aC | dt+

2∑
k=1

∫ tf

t0

|aBk | dt

+

4∑
j=1

∫ tf

t0

∣∣aAj ∣∣ dt,
(9)
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Figure 13. Controlled (black line) vs. uncontrolled (red line)
FRCs of the roller battery points (top) B1 and (bottom) C for the
nonsymmetric load distribution on the rollers.
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Figure 14. Normalized objective function vs. number of
iterations performed by the DE algorithm for the skew-symmetric
(top) and nonsymmetric (bottom) harmonic loading case.

where t0 and t1 represent the vehicle initial and final transit
times across the equivalent cable length Leq , respectively.
Moreover, it is worth mentioning that only the accelerations
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Table 4. Lowest sixteen nondimensional natural frequencies,
modal masses, damping ratios, and stiffnesses of the system
including linear visco-elastic vibration absorbers optimized
according to the skew-symmetric point-load distribution.

Mode f̄ [-] M̄ [-] ζ [%] K̄ [-]
1 0.056 7.50 · 10−4 2.07 9.28 · 10−5

2 0.058 9.60 · 10−4 2.15 1.29 · 10−4

3 0.061 1.27 · 10−3 2.26 1.89 · 10−4

4 0.064 1.03 · 10−3 2.35 1.71 · 10−4

5 0.090 3.11 · 10−3 1.87 1.00 · 10−3

6 0.097 6.5 · 10−4 2.95 2.41 · 10−4

7 0.112 1.25 · 10−3 2.12 6.26 · 10−4

8 0.120 1.41 · 10−3 2.09 8.04 · 10−4

9 0.152 8.54 · 10−3 1.64 7.87 · 10−3

10 0.159 2.5 · 10−4 0.73 2.51 · 10−4

11 0.162 8.41 · 10−3 1.50 8.69 · 10−3

12 0.176 9.30 · 10−3 1.43 1.14 · 10−2

13 0.185 9.00 · 10−3 1.38 1.22 · 10−2

14 0.268 3.80 · 10−3 1.80 1.08 · 10−2

15 0.306 2.20 · 10−3 3.72 8.18 · 10−3

16 0.322 2.10 · 10−3 1.14 8.64 · 10−3

Table 5. Lowest sixteen nondimensional natural frequencies,
modal masses, damping ratios, and stiffnesses of the system
including linear visco-elastic vibration absorbers optimized
according to the nonsymmetric point-load distribution.

Mode f̄ [-] M̄ [-] ζ [%] K̄ [-]
1 0.057 1.59 · 10−3 1.84 2.09 · 10−4

2 0.061 1.14 · 10−3 2.05 1.69 · 10−4

3 0.090 3.31 · 10−3 1.89 1.07 · 10−3

4 0.097 6.20 · 10−4 3.15 2.30 · 10−4

5 0.112 1.29 · 10−3 2.08 6.48 · 10−4

6 0.120 1.37 · 10−3 2.09 7.79 · 10−4

7 0.152 8.55 · 10−3 1.64 7.88 · 10−3

8 0.159 2.50 · 10−4 0.72 2.54 · 10−4

9 0.162 8.19 · 10−3 1.50 8.53 · 10−3

10 0.176 8.89 · 10−3 1.41 1.09 · 10−2

11 0.178 6.00 · 10−4 0.81 7.46 · 10−4

12 0.185 8.46 · 10−3 1.37 1.15 · 10−2

13 0.263 3.43 · 10−3 2.93 9.39 · 10−3

14 0.296 2.18 · 10−3 3.91 7.58 · 10−3

15 0.318 1.05 · 10−3 0.80 4.20 · 10−3

16 0.327 6.80 · 10−4 1.22 2.87 · 10−3

of points Aj , Bk and C are considered in the minimization
of the objective function in Eq. (9), while those induced
in the roller Pi are neglected since they cannot be directly
controlled by ad hoc VAs positioned atop each of these points
due to physical constraints.

The solutions obtained for the linearly visco-elastic VAs
(linearized system) are used to set the search space for
the parameters of the nonlinearly visco-elastic absorbers.
The damping coefficient and the stiffness of the nonlinear
absorbers (see Eqs. (6) and (7)) can be expressed as a
function of the linearized frequencies f̄n, damping ratios
ζn, and masses mn as follows: dn = 4πζnf̄nmn and kn =
(2πf̄n)2mn. In this way, the optimization of the nonlinear

VAs can be compared with the results obtained for the
linear VAs according to the harmonic solutions. It is worth
recalling, that the linearization of the nonlinear VAs restoring
forces provides those of the linear absorbers. Moreover,
when the parameters ξk,n and ξd,n are equal to zero, the
nonlinear absorbers exhibit the same restoring forces of the
linear case.

The DE-based optimization of the parameters f̄n, ζn,
ξk,n, ξd,n, and xn is performed by assuming 25 values for
each search space and setting the VAs masses to the values
reported in Tab. 2. Table 6 shows the optimal parameters
found for the nonlinearly visco-elastic absorbers considering
the vehicle running at the nondimensional speed of 0.025.
The objective function Γ converges to the minimum after 500
iterations (see Fig. 15). Figures 16, 17 and 18 show the time
histories of the accelerations of P1, P3,A2,A3,B1 andC for
the uncontrolled and the controlled cases, respectively. The
force-displacement cycles of the nonlinear VAs positioned at
Aj , Bk and C are reported in Figs. 19, 20, and 21.

According to the optimal values of ξk,n reported in
Tab. 6, the VA positioned at A1 exhibits a limited hardening
behavior while the remaining VAs show a limited softening
restoring force. In particular, the absorber at A4 exhibits a
linear visco-elastic behavior because of the small value of
xn that provides a fast convergence to a constant stiffness
and damping. A linear visco-elastic behavior can be observed
also for the absorbers at B2 and C. This is due to the small
displacements range characterizing their oscillations. The
coefficient ξd,n is greater than zero for all absorbers except
for that at B2. Thus, the optimization procedure drives the
damping behavior of the VAs so as to reduce the damped
energy in the small displacements range.

The control provided by the set of nonlinearly visco-
elastic VAs is effective. The analysis of Tabs. 7 and 8
show that the peak accelerations and the mean accelerations
are consistently reduced with respect to the uncontrolled
case. The linearly visco-elastic absorbers optimized for the
harmonic nonsymmetric loading distribution and tested in
the nonlinear ropeway system with the vehicle transit show
lower performance if compared to that of the nonlinearly
visco-elastic VAs. The only point of the system for which
the maximum acceleration is amplified for both linear and
nonlinear VAs is B2.

The obtained results can be explained as follows. The
absorber at A1 is the first affected by the impact of the grip.
The mild hardening with low stiffness and damping for small
displacements facilitates the energy transfer from the roller
to the absorber. The other absorbers, including that at A2,
which are excited for the first time moderately by the initial
impact, respond showing a mild softening dynamic behavior,
in accordance with the softening nonlinearities of the roller
battery system due to the inertia nonlinear effects [23].

CONCLUSIONS
A multi-body dynamic model of a compression roller-
battery that is part of a mono-cable ropeway was employed
to investigate a vibration control strategy making use
of multiple linearly and nonlinearly visco-elastic VAs.
The stiffness and viscosity parameters of the linear VAs
were designed by means of a Differential Evolution
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Table 6. Optimized parameters of the nonlinearly visco-elastic
VAs for the vehicle transit across the roller at the velocity of
0.025

VA f̄opt ζopt ξk,opt ξd,opt xopt
[-] [%] [-] [-] [-]

A1 0.123 3.43 0.87 0.94 0.0250
A2 0.120 2.15 -0.35 0.78 0.0136
A3 0.114 1.95 -0.64 0.13 0.0096
A4 0.118 1.46 -0.29 0.95 0.0004
B1 0.091 0.51 -0.95 0.95 0.0362
B2 0.186 0.50 -0.75 -0.79 0.0342
C 0.281 0.78 -0.95 0.31 0.0121
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Figure 15. Normalized objective function vs. number of
iterations performed by the DE algorithm for the optimization of
the nonlinearly visco-elastic absorbers.
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Figure 16. Acceleration vs. time at P1 (top) and P3 (bottom) for
the vehicle speed of 0.025: in the uncontrolled (red line) and
controlled (black line) via nonlinearly visco-elastic VAs.
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Figure 17. Acceleration vs. time at A2 (top) and A3 (bottom)
for the vehicle speed of 0.025: in the uncontrolled (red line) and
controlled (black line) via nonlinearly visco-elastic VAs.
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Figure 18. Acceleration vs. time at B1 (top) and C (bottom) for
the vehicle speed of 0.025: in the uncontrolled (red line) and
controlled (black line) via nonlinearly visco-elastic VAs.

optimization seeking to minimize the linear frequency
response functions for the accelerations of the control
points under harmonic excitations. A novel mechanical
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Figure 19. Force-displacement cycles for nonlinearly
visco-elastic VAs at A1 (top) and A2 (bottom) for the vehicle
speed of 0.025.
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Figure 20. Force-displacement cycles for nonlinearly
visco-elastic VAs at A3 (top) and A4 (bottom) for the vehicle
speed of 0.025.

model of vibration absorber exhibiting a nonlinearly visco-
elastic (hysteretic-like) behavior is proposed. The innovative
device can provide a mild hardening or softening behavior
combined with a modulation of the energy dissipation
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Figure 21. Force-displacement cycles for nonlinearly
visco-elastic VAs at B1 (top), B2 (middle) and C (bottom) for
the vehicle speed of 0.025.

rate across the force-displacement cycles. The parameters
of the nonlinearly visco-elastic absorbers were estimated
performing a Differential Evolution optimization on the fully
nonlinear system for the passage of the vehicle across the
roller at a relatively high speed. Finally, the performances
of the linear VAs, optimized through the linear FRCs for
the nonsymmetric loading condition, are compared with the
nonlinear VAs in controlling the nonlinear system excited by
the transit of the vehicle.

The results showed that the proposed nonlinear absorbers
are highly efficient in the mitigation of the accelerations
induced by the vehicle transit in the roller mechanical
parts and perform better than linear optimal devices. An
important aspect to highlight is represented by the results of
the optimization of the nonlinear VAs. The combination of
mild softening and hardening with low dissipation rates in
a small oscillations range seems to be a good way forward
for controlling both the transient and the stationary dynamic
response of the nonlinear mechanical system. The mild low-
stiffness hardening behavior is suitable for the mitigation of
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Table 7. Comparison between the mean accelerations (i.e.,
Mean(a)) calculated in the uncontrolled case and in the case
controlled by linear and nonlinear visco-elastic VAs,
respectively, for the vehicle nondimensional transit speed of
0.025.

Uncontrolled Nonlinear VAs Linear VAs
Point Mean(a) [−] Mean(a) [−] Mean(a) [−]
P1 1.28 · 10−3 7.06 · 10−4 8.43 · 10−4

P2 1.08 · 10−3 9.38 · 10−4 9.35 · 10−4

P3 1.20 · 10−3 5.45 · 10−4 7.44 · 10−4

P4 1.36 · 10−3 7.13 · 10−4 9.11 · 10−4

P5 8.82 · 10−4 6.63 · 10−4 7.18 · 10−4

P6 1.27 · 10−3 7.20 · 10−4 9.08 · 10−4

P7 7.12 · 10−4 7.23 · 10−4 7.05 · 10−4

P8 1.09 · 10−3 7.24 · 10−4 8.72 · 10−4

A1 9.06 · 10−4 3.37 · 10−4 5.31 · 10−4

A2 1.19 · 10−3 4.09 · 10−4 6.93 · 10−4

A3 8.77 · 10−4 4.44 · 10−4 5.87 · 10−4

A4 5.84 · 10−4 3.03 · 10−4 3.95 · 10−4

B1 2.55 · 10−4 1.83 · 10−4 2.05 · 10−4

B2 2.51 · 10−4 1.86 · 10−4 2.05 · 10−4

C 1.39 · 10−4 1.26 · 10−4 1.26 · 10−4

Table 8. Comparison between the peak accelerations (i.e.,
Max(a)) calculated in the uncontrolled case and in the case
controlled by linear and nonlinear visco-elastic VAs,
respectively, for the vehicle nondimensional transit speed of
0.025.

Uncontrolled Nonlinear VAs Linear VAs
Point Max(a) [−] Max(a) [−] Max(a) [−]
P1 4.55 · 10−3 3.28 · 10−3 3.76 · 10−3

P2 4.97 · 10−3 5.05 · 10−3 5.07 · 10−3

P3 4.58 · 10−3 3.52 · 10−3 3.61 · 10−3

P4 5.72 · 10−3 4.65 · 10−3 5.24 · 10−3

P5 5.10 · 10−3 4.31 · 10−3 4.59 · 10−3

P6 6.00 · 10−3 4.53 · 10−3 5.36 · 10−3

P7 5.74 · 10−3 4.82 · 10−3 5.33 · 10−3

P8 8.90 · 10−3 6.72 · 10−3 7.79 · 10−3

A1 3.07 · 10−3 1.90 · 10−3 2.45 · 10−3

A2 3.93 · 10−3 2.80 · 10−3 3.31 · 10−3

A3 3.65 · 10−3 2.35 · 10−3 2.91 · 10−3

A4 2.74 · 10−3 1.66 · 10−3 2.13 · 10−3

B1 1.25 · 10−3 1.89 · 10−3 2.45 · 10−3

B2 1.06 · 10−3 2.80 · 10−3 3.31 · 10−3

C 4.88 · 10−4 3.61 · 10−4 3.56 · 10−4

the transient response, while the limited softening, which
tailors the nonlinearities of the roller battery system, controls
better the stationary dynamics.

The obtained results show the feasibility of a multi-
mode vibration control strategy for a ropeway transportation
system. The achieved vibration mitigation can have a
significant impact on the maintenance operations and
associated costs due to the increased dynamical resilience
of the mechanical parts. Moreover, it is possible to operate
the ropeway with higher running speeds thus increasing
the throughput of the system. The proposed prototype of

absorber can be actually realized and installed on a ropeway
at relatively low cost.
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