The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years to identify a configuration that might guarantee EUROFER temperature below the limit (550 °C) and good thermal-hydraulic performances (i.e. water outlet temperature of 328 °C). A research activity is conducted to study and compare different modelling approaches to simulate the heat transfer within the BZ liquid metal, assessing their impact on the numerical prediction of the WCLL blanket thermal performances. An approach will rely on the simulation of convective and diffusive heat transfer processes taking place within the liquid metal by means of a CFD tool based on the Finite Volume Method. Conversely, the other approach will roughly assume a pure diffusive heat transfer mechanism within the breeder, due to the very low velocities envisaged for its flow field. In this case the heat transfer performances will be preferably assessed by means of a commercial code based on the Finite Element Method. The analyses have been carried out with reference to the so called “WCLL BB 2018 V0.6″ equatorial cell. Advantages and issues from the thermal-hydraulic point of view are identified, the impact of the imposed boundary conditions and heat transfer properties, with the implemented correlations, on the respective results is critically discussed.

On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances / Edemetti, Francesco; Martelli, Emanuela; Del Nevo, Alessandro; Giannetti, Fabio; Arena, Pietro; Forte, Ruggero; Di Maio, Pietro Alessandro; Caruso, Gianfranco. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - 161:(2020), pp. 1-5. [10.1016/j.fusengdes.2020.112051]

On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances

Edemetti, Francesco
Primo
;
Giannetti, Fabio;Caruso, Gianfranco
2020

Abstract

The Water-Cooled Lithium-Lead Breeding Blanket is a key component of a fusion power plant, in charge of ensure Tritium production, shield Vacuum Vessel and magnets and remove the heat power deposited by radiation and particles arising from plasma. The last function is fulfilled by First Wall and Breeding Zone independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years to identify a configuration that might guarantee EUROFER temperature below the limit (550 °C) and good thermal-hydraulic performances (i.e. water outlet temperature of 328 °C). A research activity is conducted to study and compare different modelling approaches to simulate the heat transfer within the BZ liquid metal, assessing their impact on the numerical prediction of the WCLL blanket thermal performances. An approach will rely on the simulation of convective and diffusive heat transfer processes taking place within the liquid metal by means of a CFD tool based on the Finite Volume Method. Conversely, the other approach will roughly assume a pure diffusive heat transfer mechanism within the breeder, due to the very low velocities envisaged for its flow field. In this case the heat transfer performances will be preferably assessed by means of a commercial code based on the Finite Element Method. The analyses have been carried out with reference to the so called “WCLL BB 2018 V0.6″ equatorial cell. Advantages and issues from the thermal-hydraulic point of view are identified, the impact of the imposed boundary conditions and heat transfer properties, with the implemented correlations, on the respective results is critically discussed.
2020
WCLL; CFD; FEM; breeding blanket; blanket engineering
01 Pubblicazione su rivista::01a Articolo in rivista
On the impact of the heat transfer modelling approach on the prediction of EU-DEMO WCLL breeding blanket thermal performances / Edemetti, Francesco; Martelli, Emanuela; Del Nevo, Alessandro; Giannetti, Fabio; Arena, Pietro; Forte, Ruggero; Di Maio, Pietro Alessandro; Caruso, Gianfranco. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - 161:(2020), pp. 1-5. [10.1016/j.fusengdes.2020.112051]
File allegati a questo prodotto
File Dimensione Formato  
Edemetti_On the impact_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.19 MB
Formato Adobe PDF
4.19 MB Adobe PDF   Contatta l'autore
Edemetti_On the impact_postprint_2020.pdf

Open Access dal 02/01/2023

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1448162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact