We consider the conjugation-action of the Borel subgroup of the symplectic or the orthogonal group on the variety of nilpotent complex elements of nilpotency degree 2 in its Lie algebra. We translate the setup to a representation-theoretic context in the language of a symmetric quiver algebra. This makes it possible to provide a parametrization of the orbits via a combinatorial tool that we call symplectic/orthogonal oriented link patterns. We deduce information about numerology. We then generalize these classifications to standard parabolic subgroups for all classical groups. Finally, our results are restricted to the nilradical. © 2019 Heldermann Verlag.

Parabolic orbits of 2-nilpotent elements for classical groups / Boos, ; Cerulli, Irelli; Esposito,. - In: JOURNAL OF LIE THEORY. - ISSN 0949-5932. - 29:4(2019).

Parabolic orbits of 2-nilpotent elements for classical groups

Cerulli Irelli;
2019

Abstract

We consider the conjugation-action of the Borel subgroup of the symplectic or the orthogonal group on the variety of nilpotent complex elements of nilpotency degree 2 in its Lie algebra. We translate the setup to a representation-theoretic context in the language of a symmetric quiver algebra. This makes it possible to provide a parametrization of the orbits via a combinatorial tool that we call symplectic/orthogonal oriented link patterns. We deduce information about numerology. We then generalize these classifications to standard parabolic subgroups for all classical groups. Finally, our results are restricted to the nilradical. © 2019 Heldermann Verlag.
2019
Algebra with self-duality; Auslander-Reiten quiver; B-orbits; Combinatorial classification; Symmetric quiver
01 Pubblicazione su rivista::01a Articolo in rivista
Parabolic orbits of 2-nilpotent elements for classical groups / Boos, ; Cerulli, Irelli; Esposito,. - In: JOURNAL OF LIE THEORY. - ISSN 0949-5932. - 29:4(2019).
File allegati a questo prodotto
File Dimensione Formato  
Boos_Parabolic_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 692.95 kB
Formato Adobe PDF
692.95 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1443403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact