We consider the conjugation-action of the Borel subgroup of the symplectic or the orthogonal group on the variety of nilpotent complex elements of nilpotency degree 2 in its Lie algebra. We translate the setup to a representation-theoretic context in the language of a symmetric quiver algebra. This makes it possible to provide a parametrization of the orbits via a combinatorial tool that we call symplectic/orthogonal oriented link patterns. We deduce information about numerology. We then generalize these classifications to standard parabolic subgroups for all classical groups. Finally, our results are restricted to the nilradical. © 2019 Heldermann Verlag.
Parabolic orbits of 2-nilpotent elements for classical groups / Boos, ; Cerulli, Irelli; Esposito,. - In: JOURNAL OF LIE THEORY. - ISSN 0949-5932. - 29:4(2019).
Parabolic orbits of 2-nilpotent elements for classical groups
Cerulli Irelli;
2019
Abstract
We consider the conjugation-action of the Borel subgroup of the symplectic or the orthogonal group on the variety of nilpotent complex elements of nilpotency degree 2 in its Lie algebra. We translate the setup to a representation-theoretic context in the language of a symmetric quiver algebra. This makes it possible to provide a parametrization of the orbits via a combinatorial tool that we call symplectic/orthogonal oriented link patterns. We deduce information about numerology. We then generalize these classifications to standard parabolic subgroups for all classical groups. Finally, our results are restricted to the nilradical. © 2019 Heldermann Verlag.File | Dimensione | Formato | |
---|---|---|---|
Boos_Parabolic_2019.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
692.95 kB
Formato
Adobe PDF
|
692.95 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.