In this chapter we study a family of multiplicity-free triples on GL (2, Fq) that generalize the well known Gelfand pair associated with the finite hyperbolic plane (see [Terras, Fourier analysis on finite groups and applications. London mathematical society student texts, vol 43. Cambridge University Press, Cambridge, 1999, Chapters 19, 20, 21, and 23]). We suppose that q is an odd prime power (cf. Sect. 3.5) and we denote by (formula presented) the multiplicative characters of Fq (respectively (formula presented)).

In questo capitolo studiamo una prima terna priva di molteplicità su GL (2, Fq).

Harmonic analysis of the multiplicity-free triple (gl(2, Fq), C, ν) / Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F.. - (2020), pp. 71-94. - LECTURE NOTES IN MATHEMATICS. [10.1007/978-3-030-51607-9_5].

Harmonic analysis of the multiplicity-free triple (gl(2, Fq), C, ν)

Scarabotti F.;
2020

Abstract

In this chapter we study a family of multiplicity-free triples on GL (2, Fq) that generalize the well known Gelfand pair associated with the finite hyperbolic plane (see [Terras, Fourier analysis on finite groups and applications. London mathematical society student texts, vol 43. Cambridge University Press, Cambridge, 1999, Chapters 19, 20, 21, and 23]). We suppose that q is an odd prime power (cf. Sect. 3.5) and we denote by (formula presented) the multiplicative characters of Fq (respectively (formula presented)).
2020
Gelfand Triples and Their Hecke Algebras
978-3-030-51606-2
978-3-030-51607-9
In questo capitolo studiamo una prima terna priva di molteplicità su GL (2, Fq).
induced representations; Hecke algebras; linear groups; spherical functions
02 Pubblicazione su volume::02a Capitolo o Articolo
Harmonic analysis of the multiplicity-free triple (gl(2, Fq), C, ν) / Ceccherini-Silberstein, T.; Scarabotti, F.; Tolli, F.. - (2020), pp. 71-94. - LECTURE NOTES IN MATHEMATICS. [10.1007/978-3-030-51607-9_5].
File allegati a questo prodotto
File Dimensione Formato  
Ceccherini_Representation_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF
Ceccherini_preprint_Representation_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1442945
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact