We study the solutions of a generalized Allen–Cahn equation deduced from a Landau energy functional, endowed with a non-constant higher order stiffness. We assume the stiffness to be a positive function of the field and we discuss the stability of the stationary solutions proving both linear and local non-linear stability.

Stability of the stationary solutions of the Allen–Cahn equation with non-constant stiffness / Butta', P.; Cirillo, E. N. M.; Sciarra, G.. - In: WAVE MOTION. - ISSN 0165-2125. - 98:(2020). [10.1016/j.wavemoti.2020.102641]

Stability of the stationary solutions of the Allen–Cahn equation with non-constant stiffness

BUTTA' P.;Cirillo E. N. M.;Sciarra G.
2020

Abstract

We study the solutions of a generalized Allen–Cahn equation deduced from a Landau energy functional, endowed with a non-constant higher order stiffness. We assume the stiffness to be a positive function of the field and we discuss the stability of the stationary solutions proving both linear and local non-linear stability.
2020
Allen–Cahn equation; gradient equation; interface; phase coexistence; stability
01 Pubblicazione su rivista::01a Articolo in rivista
Stability of the stationary solutions of the Allen–Cahn equation with non-constant stiffness / Butta', P.; Cirillo, E. N. M.; Sciarra, G.. - In: WAVE MOTION. - ISSN 0165-2125. - 98:(2020). [10.1016/j.wavemoti.2020.102641]
File allegati a questo prodotto
File Dimensione Formato  
Buttà_Stability-stationary-solutions_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 528.46 kB
Formato Adobe PDF
528.46 kB Adobe PDF   Contatta l'autore
Buttà_Stability-stationary-solutions_preprint_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 437.54 kB
Formato Adobe PDF
437.54 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1436720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact