We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary pointswhich satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method with a recently introduced approach involving the use of the numeral called Grossone. In particular, recalling that in principle the CG method is well posed onlywhen solving positive definite linear systems, our proposal exploits the use of grossone to enhance theperformance of the CG, allowing the computation of negative curvature directions in the indefinite case, too. Our overall method could be used to significantly generalize the theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution of Newton’s equation in optimization frameworks, even in nonconvex problems. We remark that our iterative procedure to compute a negative curvature direction does not require the storage of any matrix, simply needing to store a couple of vectors. This definitely represents an advance with respect to current results in the literature.
Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization / De Leone, Renato; Fasano, Giovanni; Roma, Massimo; Sergeyev, Yaroslav D.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 186:(2020), pp. 554-589. [10.1007/s10957-020-01717-7]
Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization
Roma, Massimo;
2020
Abstract
We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary pointswhich satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method with a recently introduced approach involving the use of the numeral called Grossone. In particular, recalling that in principle the CG method is well posed onlywhen solving positive definite linear systems, our proposal exploits the use of grossone to enhance theperformance of the CG, allowing the computation of negative curvature directions in the indefinite case, too. Our overall method could be used to significantly generalize the theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution of Newton’s equation in optimization frameworks, even in nonconvex problems. We remark that our iterative procedure to compute a negative curvature direction does not require the storage of any matrix, simply needing to store a couple of vectors. This definitely represents an advance with respect to current results in the literature.File | Dimensione | Formato | |
---|---|---|---|
DeLeone_Iterative-Grossone-Based_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
807.31 kB
Formato
Adobe PDF
|
807.31 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.