We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary pointswhich satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method with a recently introduced approach involving the use of the numeral called Grossone. In particular, recalling that in principle the CG method is well posed onlywhen solving positive definite linear systems, our proposal exploits the use of grossone to enhance theperformance of the CG, allowing the computation of negative curvature directions in the indefinite case, too. Our overall method could be used to significantly generalize the theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution of Newton’s equation in optimization frameworks, even in nonconvex problems. We remark that our iterative procedure to compute a negative curvature direction does not require the storage of any matrix, simply needing to store a couple of vectors. This definitely represents an advance with respect to current results in the literature.

Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization / De Leone, Renato; Fasano, Giovanni; Roma, Massimo; Sergeyev, Yaroslav D.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 186:(2020), pp. 554-589. [10.1007/s10957-020-01717-7]

Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization

Roma, Massimo;
2020

Abstract

We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary pointswhich satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method with a recently introduced approach involving the use of the numeral called Grossone. In particular, recalling that in principle the CG method is well posed onlywhen solving positive definite linear systems, our proposal exploits the use of grossone to enhance theperformance of the CG, allowing the computation of negative curvature directions in the indefinite case, too. Our overall method could be used to significantly generalize the theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution of Newton’s equation in optimization frameworks, even in nonconvex problems. We remark that our iterative procedure to compute a negative curvature direction does not require the storage of any matrix, simply needing to store a couple of vectors. This definitely represents an advance with respect to current results in the literature.
2020
negative curvature directions; second-order necessary optimality conditions; grossone; Conjugate Gradient method
01 Pubblicazione su rivista::01a Articolo in rivista
Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization / De Leone, Renato; Fasano, Giovanni; Roma, Massimo; Sergeyev, Yaroslav D.. - In: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS. - ISSN 0022-3239. - 186:(2020), pp. 554-589. [10.1007/s10957-020-01717-7]
File allegati a questo prodotto
File Dimensione Formato  
DeLeone_Iterative-Grossone-Based_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 807.31 kB
Formato Adobe PDF
807.31 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1433829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact