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Abstract
We consider an iterative computation of negative curvature directions, in large-scale
unconstrained optimization frameworks, needed for ensuring the convergence toward
stationary pointswhich satisfy second-order necessary optimality conditions.We show
that to the latter purpose, we can fruitfully couple the conjugate gradient (CG) method
with a recently introduced approach involving the use of the numeral calledGrossone.
In particular, recalling that in principle the CGmethod is well posed onlywhen solving
positive definite linear systems, our proposal exploits the use of grossone to enhance the
performance of the CG, allowing the computation of negative curvature directions in
the indefinite case, too.Our overallmethod could be used to significantly generalize the
theory in state-of-the-art literature. Moreover, it straightforwardly allows the solution
of Newton’s equation in optimization frameworks, even in nonconvex problems. We
remark that our iterative procedure to compute a negative curvature direction does not
require the storage of any matrix, simply needing to store a couple of vectors. This
definitely represents an advance with respect to current results in the literature.

Keywords Negative curvature directions · Second-order necessary optimality
conditions · Grossone · Conjugate gradient method
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1 Introduction

We consider the solution of the nonconvex unconstrained optimization problem
minx∈Rn f (x), where f : R

n → R is a nonlinear smooth function and n is large.
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Despite the use of the term ‘minimization’ in the last problem, most of the methods
proposed in the literature (for its solution) generate a sequence of points {xk}, which
is only guaranteed to converge to stationary points. Thus, specific methods need to be
applied in case stationary points for the above problem, satisfying also second-order
necessary optimality conditions, are sought (see, for instance, the seminal papers [1–7]
in the framework of truncated Newton methods). Observe that additional care when
using the latter methods is definitely mandatory, since imposing standard first-order
stationarity conditions may not in general ensure convexity of the quadratic model
of the objective function, in a neighborhood of the solution points. In this regard, the
computation of so-called negative curvature directions for the objective function is an
essential tool (see also the recent papers [4,8]), to guarantee convergence to stationary
points which satisfy second-order necessary conditions.

Here, we want to provide a framework for the computation of negative curvature
directions of quadratic functions, to be used within globally convergent iterative meth-
ods for large-scale nonlinear programming. Observe that the asymptotic convergence
of iterative methods, toward second-order stationary points, implies that the Hessian
matrix at limit points must be positive semidefinite. This fact requires that in principle
the iterative methods adopted must be able to fully explore the eigenspaces of the Hes-
sian matrix, at the current iterate, at least in a neighborhood of the stationary points.
Equivalently, the optimization method adopted will have to efficiently cope also with
nonconvexities of the objective function. The latter fact issues specific concerns in case
n is large, since the computational effort to solve a nonlinear programming problem
can be strongly affected by the scale.

In particular, as shown in [3,5,9], exploiting the nonconvexities of f (x) can be
accomplished by suitable Newton–Krylov methods (in the context of Hessian-free
truncated Newton methods), such that at each outer iteration j , a pair of search direc-
tions (s j , d j ) is computed, satisfying specific properties. Namely, the vector s j must be
a direction which approximately solves Newton’s equation∇2 f (x j ) s = −∇ f (x j ) at
x j . Its purpose is essentially that of ensuring the efficient convergence of the sequence
{x j } to stationary points. On the other hand, the nonascent direction d j is a negative
curvature direction (if any) for the objective function at x j . That is, d j is a nonascent
direction such that dTj ∇2 f (x j )d j ≤ 0, satisfying suited conditions in order to force
convergence to those stationary points where second-order necessary optimality con-
ditions hold. In particular, d j should resemble an eigenvector corresponding to the
least negative eigenvalue of the Hessian matrix ∇2 f (x j ). In [3,5] the direction d j is
obtained as by-product of the Krylov-subspace method applied for solving Newton’s
equation, though an expensive storage is required in [5] and a heavy computational
burden is necessary in the approach proposed in [3].

To overcome these drawbacks, in [9] an important novelty is introduced, namely the
iterative computation of the sequence {d j }, not requiring neither expensive computa-
tions nor excessive storage. This novel approach is based on the use of the so-called
Planar-CG method which is a modification of the conjugate gradient method in [11].
In particular, in [9], at any iterate x j ∈ R

n , the vector d j is computed through the linear
combination of a few n-real vectors, generated by the used Krylov subspace method.
It was proved that on nonconvex problems, the overall exact computation of d j simply

123



556 Journal of Optimization Theory and Applications (2020) 186:554–589

requires at iterate x j the storage of at most four n-real vectors. Even if this approach
revealed effective, it presents some drawbacks related to a cumbersome analysis.

In this paper, partially starting from the drawbacks of the proposal in [9], we aim at
describing a strong simplification in the computation of the directions {d j }, by using
a novel approach which extends some ideas in [12]. Namely, we adopt the Krylov-
based method CG① defined in [12], being ① the symbol for the grossone (see [13]),
in order to generate a suitable matrix factorization which allows the computation of
{d j }. Similarly to [12], we first show that the CG is an ideal candidate to generate the
lattermatrix factorization. However, it may reveal serious disadvantages on nonconvex
problems. In this regard, CG① represents a natural generalization of the CG, and with
some care allows to extend CG properties on indefinite problems. Then, the CG①
is used to generate directions in eigenspaces of the Hessian matrix associated with
negative eigenvalues and to provide a suitable matrix factorization, which allows to
exploit the results in [14].

We also propose a numerical experience, where we assess the effectiveness of
the negative curvature directions computed in the current paper. We prefer to skip a
numerical comparison between our proposal and those in [3,5,10], the latter requiring
an expensive matrix storage or the need for recomputing some quantities/vectors. This
risks to make the comparison unfair, inasmuch as in [9] and here we prove that an
inexpensive iterative computation of d j is obtained, by storing at most two (four in
[9]) working vectors.

To sum up, considering [9] as a reference paper with respect to our analysis, the
main enhancements of the approach in the current paper can be summarized as follows:

– in [9] the computation of the negative curvature direction d j , at iterate x j , requires
the storage of up to four vectors, while here we propose a method requiring the
storage of only two vectors;

– the theory in [9] heavily relies on complicate matrix factorizations, due to the
structure of the Planar-CG method therein adopted. Conversely, here the analysis
through grossone only indirectly uses matrix factorizations provided by a Planar-
CGmethod. Moreover, the Planar-CGmethod indirectly adopted here is definitely
simpler that the one adopted in [9]. Hence, here the theoretical analysis to prove
convergence of the sequence {x j } to stationary points, satisfying second-order
conditions, is drastically simplified;

– the strategy adopted in [9] to compute the search directions is definitely more
computationally expensive than the one proposed here;

– as regards numerical results, we do not claim that our proposal is always more
efficient than the one in [9], depending on the problem in hand.

The paper is organized as follows: Sect. 2 reports some preliminaries on the use of
negative curvature directions within truncated Newton methods. In Sect. 3, we give
some basics on grossone, in order to motivate its use within the algorithm CG①. Sec-
tion 4 emphasizes the importance of certainmatrix factorizations, in order to iteratively
compute the final negative curvature direction. Section 5 stresses the importance of
pairing CG① with the approach in [14]. Moreover, the last section explicitly yields
our formula for determining the negative curvature direction. Finally, Sect. 6 contains
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a numerical experience on our proposal, and Sect. 7 reports some conclusions and
future research perspectives.

In this paper, we use standard notations for vectors and matrices. With ‖ · ‖, we
indicate the Euclidean norm. λ[A] is a general eigenvalue of matrix A ∈ R

n×n , and
A � 0 [A � 0] indicates that A is positive definite [semidefinite]. ek ∈ R

n represents
the kth unit vector, while the symbol ① represents the numeral grossone (see also
[13]).

2 Negative Curvature Directions in Truncated NewtonMethods

Hereafter, we will use the following scheme

min
x∈Rn

f (x), (1)

with f ∈ C2(Rn), as a general reference for an unconstrained optimization problem.
Moreover, the equation

∇2 f (x j ) s = −∇ f (x j ) (2)

represents Newton’s equation associated with problem (1).
The use of negative curvature directions in the framework of truncated Newton

methodswas introduced in the early papers [6,7], in order to define algorithms converg-
ing toward second-order critical points, namely stationary points where the Hessian
matrix is positive semidefinite. Following the approach in [7], the sequence of negative
curvature directions {d j } is expected to satisfy the conditions in the next assumption.

Assumption 2.1 Given problem (1), with f ∈ C2(Rn), the nonascent directions in the
sequence {d j } are bounded and satisfy the conditions

(a) ∇ f (x j )T d j ≤ 0, dTj Hjd j ≤ 0,

(b) if lim j→∞ dTj ∇2 f (x j )d j = 0 then lim j→∞ min
{
0, λmin

[∇2 f (x j )
]} = 0,

where λmin
[∇2 f (x j )

]
is the smallest eigenvalue of the Hessian matrix ∇2 f (x j ).

The approach adopted in [7] may be generalized to some extent (see, for instance, the
proposal in [5]), by suitably weakening conditions the directions {d j } are subject to.

Roughly speaking, the condition (a) in Assumption 2.1 implies that at any iterate
x j , the nonascent vector d j must be a nonpositive curvature direction. Moreover, as
in condition (b), when the quantity dTj ∇2 f (x j )d j approaches zero, then the sequence
{x j } is approaching a region of convexity for the function f (x). Indeed, in such a case
there will be no more chances to compute a negative curvature direction satisfying
dTj ∇2 f (x j )d j < 0, so that eventually the condition dTj ∇2 f (x j )d j → 0must hold. Of
course, on convexproblems, negative curvature directions are not present, so that points
provided byNewton–Krylovmethods eventually satisfy also second-order stationarity
conditions.
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We recall that the main purpose of Newton–Krylov methods is to compute the (pos-
sibly) infinite sequence {x j }, such that at least one of its subsequences is convergent
to a stationary point of f (x). In this regard, Assumption 2.1 does not imply a unique
choice of d j at iteration j . In fact, in order to fulfill (b) of Assumption 2.1, it suf-
fices to compute d j so that dTj ∇2 f (x j )d j ≤ vTj ∇2 f (x j )v j , being v j an eigenvector

associated with the smallest eigenvalue of ∇2 f (x j ). In addition, d j becomes essen-
tial only eventually; i.e., far from a stationary point, it might be unnecessary to force
convergence toward regions of convexity for f (x). Nevertheless, using information
associatedwith the negative curvature direction d j , alsowhen far from a solution point,
may considerably enhance efficiency. The latter fact was evidenced, for instance, in
[3,5,10] and intuitively follows from the next reasoning. Given the local quadratic
expansion

q j (d) = f (x j ) + ∇ f (x j )
T d + 1

2
dT∇2 f (x j )d,

at x j , the directional derivative of q j (d)

∇q j (d)T d = ∇ f (x j )
T d + dT∇2 f (x j )d,

along d, may strongly decrease when d is not only a descent vector, but also a negative
curvature direction. This fact is explicitly used in [2,3,5,10] when a negative curvature
direction d j is adopted, at any iteration j , even if it is possibly not associated with an
eigenvector z corresponding to the smallest negative eigenvalue of ∇2 f (x j ).

Further developments on the computation of negative directions, to be used within
truncated Newton methods, have been introduced in the already mentioned papers
[3,5,9]. In particular, in [3,5] the direction d j is obtained as by-product, when applying
a Krylov-subspace method to solve Newton’s equation (2). However, since the Krylov
method may perform, at iteration j , a number k of steps considerably smaller than n,
not all the eigenspaces associated with the Hessian matrix ∇2 f (x j ) will be explored,
vanishing the search of z. Hence, only an approximation of z may be available after k
steps of the Krylov-based method.

In [9], the iterative computation of the directions {d j } is proposed. The innovative
contribution in [9] consisted of explicitly providing the iterative computation of the
sequence {d j }, without requiring burdensome re-computing (as in [3]) or any expensive
storage (as in [5]). In particular, the Krylov-based procedure adopted in [9] to compute
d j involves the use of the Planar-CG method, which represents an extension of the
CG to nonconvex quadratic functions, where the Hessian matrix is possibly indefinite.
The approach using this Planar-CG method surely proved to be effective, but it has a
major disadvantage, requiring a fairly complex analysis which involves considering
different and articulated subcases.

3 A Brief Introduction to the ①-Based Computational Methodology

The numeral ① called grossone has been introduced (see a recent survey [13]) as a
basic element of a powerful numeral system, allowing one to express not only finite
but also infinite and infinitesimal quantities. (Analogously, the numeral 1 is a basic
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element allowing one to express finite quantities.) From the foundational point of view,
grossone has been introduced as an infinite unit of measure equal to the number of
elements of the set N of natural numbers. (Notice that the noncontradictoriness of the
①-based computational methodology has been studied in depth in [15–17].) From the
practical point of view, this methodology has given rise both to a new supercomputer
patented in several countries (see [18]) and called Infinity Computer and to a variety
of applications starting from optimization (see [12,19–24]) and going through infinite
series (see [13,25–28]), fractals and cellular automata (see [25,29–32]), hyperbolic
geometry and percolation (see [33,34]), the first Hilbert problem and Turing machines
(see [13,35,36]), infinite decision making processes and probability (see [13,37–39]),
numerical differentiation and ordinary differential equations (see [40–43]), etc.

Thismethodologydoes not contradict traditional viewson infinity and infinitesimals
(Cantor, Leibnitz, Robinson, etc.) and proposes just another, more computationally
oriented, way to deal with these objects. In particular, in order to avoid misunderstand-
ing it should be stressed that there exist several differences (see [44] for a detailed
discussion) that distinguish the numerical ①-based methodology from symbolically
oriented nonstandard analysis of Robinson. Another important preliminary remark is
that symbols traditionally used toworkwith infinities and infinitesimals (∞ introduced
by Wallis, Cantor’s ω, ℵ0,ℵ1, ..., etc.) are not used together with ①. Similarly, when
the positional numeral system and the numeral 0 expressing zero had been introduced,
symbols V, X and other symbols from the Roman numeral system had not been used
in the positional numeral system.

The numeral ① allows one to construct different numerals involving infinite, finite,
and infinitesimal parts and to execute numerical computations with all of them in a
unique computational framework.As a result, it becomes possible to execute arithmeti-
cal operations with a variety of different infinities and infinitesimals. As a remarkable
result, indeterminate forms such as ∞ − ∞ or ∞ · 0 are not present when one works
with numbers expressed in the ①-based numeral system. Traditionally existing kinds
of divergences do not appear, as well. They are substituted by expressions that can
contain also finite, infinite and infinitesimal parts.

In order to give some examples of arithmetical operations that can be executed
in the ①-based numeral system, let us consider the following numbers: ① and ①16.3

(that are examples of infinities), along with ①−1 and ①−16.3 (that are examples of
infinitesimals). Then, we can compute, for instance, the following expressions:

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0,

0 · ①−1 = ①−1 · 0 = 0, ①16.3 > ①1 > 1 > ①−1 > ①−16.3 > 0,

①−1 − ①−1 = 0,
①−1

①−1 = 1,
6.7 + ①−16.3

①−16.3 = 6.7①16.3 + 1, (①−1)0 = 1,

① · ①−1 = 1, ① · ①−16.3 = ①−15.3,
4.2①16.3 + 29.1①

①
= 4.2①15.3 + 29.1,

①16.3

①−16.3 = ①32.6, (①16.3)0 = 1, ①16.3 · ①−1 = ①15.3, ①16.3 · ①−16.3 = 1.

(3)
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Table 1 A practical implementation of the CG algorithm for the symmetric positive definite linear system
Ax = b, with A ∈ R

n×n

The Conjugate Gradient (CG) method

Data: Set k = 0, x0 = 0, r0 = b − Ax0, ε > 0.
If ‖r0‖ < ε, then STOP. Else, set p0 = r0.

Step k: Compute ak = rTk pk/pTk Apk, xk+1 = xk + akpk, rk+1 = rk − akApk.
If ‖rk+1‖ < ε, then STOP.
Else, set βk = −rTk+1Apk/pTk Apk = ‖rk+1‖2/‖rk‖2,
pk+1 = rk+1 + βkpk, and k = k + 1.
Go to Step k.

In general, in the ①-based numeral system the simplest infinitesimal num-
bers are represented by numerals having only negative finite powers of ① (e.g.,
40.17①−13.26+87.32①−25.7, see also examples above). The simplest infinite num-
bers are represented by numerals having at least one positive power of ①. Then, it can
be seen in (3) that ①0 = 1; therefore, a finite number a can be represented in the new
numeral system simply as a①0 = a, where the numeral a itself can be written down
by any convenient numeral system used to express finite numbers. These numbers
are called purely finite because they do not contain infinitesimal parts. For instance,
number 5 is purely finite and 5 + 3①−16.3 is finite but not purely finite, because it
contains the infinitesimal part 3①−16.3. Notice that all infinitesimals are not equal to
zero. In particular, 1

①
> 0 because it is a result of division of two positive numbers.

4 TheMatrix FactorizationsWe Need

In the current and the next section,wedescribe how touse someKrylov-subspacemeth-
ods, in order to gain advantage of a suitable factorization for the (possibly) indefinite
Hessian matrix ∇2 f (x j ). We strongly remark that we never explicitly compute here
any Hessian decomposition, since our final achievements definitely rely on implicit
decompositions, induced by Krylov-based methods.

As a general result, we highlight that computing negative curvature directions for
f (x) at x j , which match the requirements in Assumption 2.1, may reduce to a simple
task when suitable factorizations of ∇2 f (x j ) are available. To give an intuition of the
latter fact, suppose both the relations

MT
j ∇2 f (x j )Mj = C j , C j = Q j B j Q

T
j , (4)

are available at iterate x j , being Mj ∈ R
n×k , where C j , Q j , Bj ∈ R

k×k are non-
singular. In this regard, the CG (Table 1) is an example of a Krylov-based method,
satisfying the following properties:

– it provides the decompositions in (4) (see also (6)) when∇2 f (x j ) � 0,with j ≥ 1;
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– the matrices Mj ,C j , Q j , Bj have a special structure, inasmuch as (see also [45]):
The columns of Mj are unit orthogonal vectors,C j is tridiagonal, Q j is unit lower
bidiagonal, and Bj is diagonal.

Note that the Lanczos process, which represents another renowned Krylov-based
method in the literature, iteratively provides the left decomposition in (4), with C j

tridiagonal, but not the right one. It is indeed necessary to couple the Lanczos process
with a suitable factorization of C j , in order to obtain usable negative curvature direc-
tions or solvers forNewton’s equation (see, e.g., SYMMLQ/MINRES [46], SYMMBK
[47]).

Now, given (4) suppose the vector w ∈ R
k is an eigenvector of Bj , associated

with its negative eigenvalue λ, whose computation is ‘relatively simple.’ Moreover,
suppose the vector y ∈ R

k is easily available, such that QT
j y = w. Then, by (4) the

equalities/inequalities

(Mj y)
T∇2 f (x j )(Mj y) = yT

[
MT

j ∇2 f (x j )Mj

]
y

= yTC j y = (QT
j y)

T B j (Q
T
j y)

= wT B jw = λ‖w‖2 < 0

immediately show that the direction d j = Mj y is of negative curvature for f (x) at x j .
In particular, thanks to the chain of equalities above, if λ is the smallest negative eigen-
value of Bj , then Mj y is also an eigenvector of ∇2 f (x j ), associated with the smallest
eigenvalue of ∇2 f (x j ). The most renowned Krylov-subspace methods for symmetric
linear systems (i.e., SYMMLQ, SYMMBK, CG, Planar-CG methods [48–50]) can all
provide the factorizations (4) when applied to solve Newton’s equation at the iterate
x j . Hence, generating a negative curvature which satisfies (a) in Assumption 2.1, may
not be a difficult goal. However, fulfilling also (b) and the boundedness of the latter
negative curvature direction, is a less trivial task. Indeed, the counterexample in Sect. 4
of [7] issues such a drawback, when a modified Cholesky factorization of the Hessian
matrix is possibly adopted.

We strongly remark this point, since our main effort here is that of coupling a
Krylov-subspace method with the novel tool in the literature given by grossone. In
particular, we want to show that by the use of a subset of properties which hold for
grossone, we can yield an implicit matrix factorization as in (4), fulfilling also (b) and
the boundedness of the final negative curvature direction d j in Assumption 2.1.

On this purpose, let us first state a general formal result for Krylov-subspace meth-
ods,which possibly summarizes the above considerations. The proof of the next lemma
easily follows from Lemma 4.3 in [7] and Theorem 3.2 in [9].

Lemma 4.1 Let problem (1) be given with f ∈ C2(Rn), and consider an iterative
method for solving (1), which generates the sequence {x j }. Let the level setL0 = {x ∈
R
n : f (x) ≤ f (x0)} be compact, being any limit point x̄ of {x j } a stationary point

for (1), with
∣∣λ[∇2 f (x̄)]∣∣ > λ̄ > 0. Suppose n iterations of a Newton–Krylov method

are performed to solve Newton’s equation (2) at iterate x j , for a given j ≥ 0, so that
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the decompositions

RT
j ∇2 f (x j )R j = Tj , Tj = L j B j L

T
j (5)

are available. Moreover, suppose R j ∈ R
n×n is orthogonal, Tj ∈ R

n×n has the same
eigenvalues of ∇2 f (x j ), with at least one negative eigenvalue, and L j , Bj ∈ R

n×n

are nonsingular. Let z be the unit eigenvector corresponding to the smallest eigenvalue
of B j , and let ȳ ∈ R

n be the (bounded) solution of the linear system LT
j y = z. Then,

the vector d j = R j ȳ is bounded and satisfies Assumption 2.1.

The vector d j computed in Lemma 4.1 may be used to guarantee the satisfaction of
Assumption 2.1, i.e., the sequence {d j } can guarantee convergence to second-order
critical points. However, three main drawbacks of the approach in Lemma 4.1 are that

(α) the eigenvector z of Bj and the solution of the linear system LT
j y = z should be

of easy computation;
(β) the corresponding vector ȳ should be provably bounded;
(γ ) at iterate j the Newton–Krylov method adopted to solve (2) possibly does not

perform n iterations.

Observe that according to the requirements in Assumption 2.1, after a careful consid-
eration, the issue at item (γ ) is not really so relevant. Indeed, in any case (see also
[9]) when j → ∞ the convergence of the Newton–Krylov method imposes that it
eventually performs n iterations [51]. On the other hand, in case at iterate x j , for a
finite j , ∇2 f (x j ) � 0 or a vector v ∈ R

n such that vT∇2 f (x j )v < 0 is unavailable,
then the factorization (5) yet exists and we can simply set d j = 0, which satisfies (a)
in Assumption 2.1 along with the boundedness requirement.

Though the CG is not well posed when ∇2 f (x j ) � 0, in [9] the authors reported
that, in case n CG steps are performed without stopping when solving Newton’s equa-
tion, the above items (α) and (β) can be relatively easily fulfilled, even in case∇2 f (x j )
is indefinite. In particular, these results are obtained exploiting the factorizations in
Lemma 4.1, for which the CG specifically yields (Table 1)

R j =
(

r1
‖r1‖ · · · rn

‖rn‖
)

,

Bj =

⎛

⎜⎜⎜⎜
⎝

1
a1

0
. . .

. . .

0 1
an

⎞

⎟⎟⎟⎟
⎠

, L j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

−√
β1 1 0

. . .
. . .

. . .
. . .

−√
βn−2 1

0
−√

βn−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(6)
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Thanks to the above expressions of R j , Bj and L j , in [9] the authors proved that after
n steps the CG straightforwardly yields also the bounded negative curvature direction

d j = pm
‖rm‖ , (7)

being 1 ≤ m ≤ n an index such that

1

am
= min

i

{
1

ai

}
,

i.e.,

d j = pm
‖rm‖ ∈ argmini

{(
pi

‖ri‖
)T

A

(
pi

‖ri‖
)}

.

Moreover, d j in (7) satisfies Lemma 4.1, thanks to the fact that Bj is diagonal (i.e., its
eigenvectors coincide with the canonical basis), L j is unit lower bidiagonal (so that
the solution of LT

j y = em is straightforwardly available by backtracking) and d j is
provably bounded.

Our goal is that of possibly replicating an analogous reasoning, with other Krylov-
based methods for indefinite linear systems, following similar guidelines. In this
regard, observe that both the tasks (α) and (β)might be hardly guaranteed only using,
for instance, the instruments in [14], essentially because comparing with the CG, the
structure of the matrices L j and Bj generated by the Planar-CG method in [14] is
more cumbersome. Nevertheless, in the next sections, starting from the structure of
matrices L j and Bj , as computed by the algorithm in [14], we will show how to use
CG① in [12] in order to fulfill the hypotheses of Lemma 4.1.

5 Our Proposal: Preliminaries

To fill the gap outlined in the previous section, and recalling that in Lemma 4.1 we
focus on the case where j → +∞, let us set for the sake of simplicity A = ∇2 f (x j ),
b = −∇ f (x j ). This allows us to drop the dependency on the subscript j . Consider the
method CG① in [12] (which is also reported in Table 2, for the sake of completeness.
Observe that the practical implementation of Step k in CG① currently allows the test
pTk Apk = 0 to be replaced by the inequality |pTk Apk | ≥ η‖pk‖2, with η > 0 small).

The CG① substantially coincides with the CG, as long as pTk Apk = 0. Moreover,
in case at Step k we have pTk Apk = 0, from Section 5.1 of [12] the CG① generates
both the vectors rk+1 and pk+1, such that they depend on ①. Furthermore, we have
(after a simple computation, and using the standard Landau–Lifsits notation O(·))

αk
.= ‖rk‖2

s①
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Table 2 The CG① algorithm for solving the symmetric indefinite linear system Ax = b, A ∈ R
n×n . In

a practical implementation of Step k of CG①, the test pTk Apk = 0 may be replaced by the inequality

|pTk Apk | ≥ η‖pk‖2, with η > 0 small

CG①: Conjugate Gradient method coupled with grossone ①

Data: Set k = 0, x0 = 0, r0 = b − Ax0, ε > 0, s = O(①−2).
If ‖r0‖ < ε, then STOP. Else, set p0 = r0.

Step k: If ‖pk‖ is finite (bounded) and pTk Apk �= 0 then compute
αk = rTk pk/pTk Apk, xk+1 = xk + αkpk, rk+1 = rk − αkApk.
If ‖rk+1‖ < ε, then STOP.

Elseif ‖pk‖ is finite (bounded) set pTk Apk = s① and compute
rk+1 = rk − ‖rk‖2/(s①)Apk.

Else compute αk = rTk pk/pTk Apk,
xk+1 = xk + αkpk, rk+1 = rk − αkApk.
If the finite part of rk+1 satisfies ‖rk+1‖ < ε, then STOP.

Endif
Set βk = −rTk+1Apk/pTk Apk = ‖rk+1‖2/‖rk‖2, and
pk+1 = rk+1 + βkpk, k = k + 1.
Go to Step k.

αk+1
.= ‖rk+1‖2

pTk+1Apk+1

=
−‖rk‖2 + ‖rk‖4‖Apk‖2

s2①2

‖rk‖4
s2①2 (Apk)T A(Apk) − ‖rk‖4‖Apk‖4

s3①3 + O(①)

= −‖rk‖2s2①2 + ‖rk‖4‖Apk‖2
‖rk‖4(Apk)T A(Apk) − ‖rk‖4‖Apk‖4

s①
+ s2①2O(①)

= −‖rk‖2s3①3 + ‖rk‖4‖Apk‖2s①
‖rk‖4(Apk)T A(Apk)s① − ‖rk‖4‖Apk‖4 + s3①3O(①)

. (8)

Recalling that by definition s = O(①−2), i.e., s① = O(①−1), then neglecting in αk+1
the terms containing negative powers of① (corresponding indeed to infinitesimalswith
respect to the value ①0 = 1—see Sect. 3) we have

1
αk

= s①
‖rk‖2

1
αk+1

= −‖Apk‖2
s①

.
(9)

This immediately implies that

αk · αk+1 < 0. (10)

Note that by using CG①, similarly to the CG to solve (2), we can recover the structure
of Bj and L j in (6), so that (7) formally applies. However, since s① is infinitesimal
in (9), after some computation we have (see also Sect. 5.1 of [12])
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rk+1 = rk − ‖rk‖2
s①

Apk

‖rk+1‖2 = ‖rk‖4‖Apk‖2
s2①2 − ‖rk‖2

pk+1 = −βk−1 pk−1 − ‖rk‖2
s①

Apk + ‖rk‖2‖Apk‖2
s2①2 pk .

Then, in case m = k + 1 in (7), to compute the direction d j we would have

d j = pm
‖rm‖ = pk+1

‖rk+1‖ = ‖Apk‖
|s|① pk + O(①0), (11)

which implies that ‖d j‖ is not bounded (being s① = O(①−1)) and Lemma 4.1
cannot be fulfilled. This consideration should not be surprising. Indeed, it basically
summarizes the fact that similarly to the CG, CG① is unable to provide the diagonal
matrix (6) with finite entries, in case the tridiagonal matrix Tj in (5) is indefinite.

Nevertheless, to overcome the latter limitation, now we show how to properly
couple CG① with the Planar-CGmethod in [14], in order to obtain a suitable bounded
negative curvature direction which fulfills Lemma 4.1.

5.1 Coupling CG① with the Algorithm in [14]

Following the taxonomy in Sect. 4, assume without loss of generality that the Krylov-
subspace method detailed in [14] is applied to solve Newton’s equation

Au = b, (12)

and n steps are performed.1 Again this allows us to drop the dependency on the
subscript j . After some computation, the following matrices are generated (see also
[52])

L =

⎛

⎜⎜⎜
⎝

L11 0 0

L21 L22 0

0 L32 L33

⎞

⎟⎟⎟
⎠

, B =

⎛

⎜⎜⎜
⎝

B11 0 0

0 B22 0

0 0 B33

⎞

⎟⎟⎟
⎠

,

where

L11 =

⎛

⎜⎜
⎝

1

−√
β1

. . .

. . . 1

⎞

⎟⎟
⎠ , L21 =

⎛

⎝
0 · · · −√

βk−1

0 · · · 0

⎞

⎠ , L22 =
⎛

⎝
1 0

0 1

⎞

⎠ , (13)

1 Note that with reference to the comments in Sect. 4, since n is large, any Krylov-based method used to
solve Newton’s equation ∇2 f (x j )u = −∇ f (x j ) is usually expected to perform n steps only eventually
(i.e., when j → +∞), being this computation typically expensive. Here, as in Lemma 4.1, the assumption
of performing n steps with the procedure in [14] is uniquely motivated to preserve simplicity. Nevertheless,
a few additional trivial modifications are necessary in case only k < n steps are performed, following the
guidelines in [52] and [5].
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L32 =

⎛

⎜⎜⎜⎜⎜
⎝

−√
βkβk+1 0

...
...

0 0

⎞

⎟⎟⎟⎟⎟
⎠

, L33 =

⎛

⎜⎜⎜⎜
⎝

1

−√
βk+2

. . .

. . . 1
−√

βn−1 1

⎞

⎟⎟⎟⎟
⎠

, (14)

and

B11 =

⎛

⎜⎜
⎝

1
α1

0
. . .

0 1
αk−1

⎞

⎟⎟
⎠ , B22 =

⎛

⎝
0

√
βk

√
βk ek+1

⎞

⎠ , B33 =

⎛

⎜⎜
⎝

1
αk+2

0
. . .

0 1
αn

⎞

⎟⎟
⎠ ,

(15)

such that

AR = RT , T = LBLT , (16)

where (see also [52]) the matrix R ∈ R
n×n has n unit orthogonal columns and is given

by

R =
(

r1
‖r1‖ · · · rn

‖rn‖
)

, (17)

with rk+1 = Apk , while T ∈ R
n×n is tridiagonal. Moreover, {αi }, {βi }, ek+1 are

suitable scalars (being ek+1 = (Apk)T A(Apk)/‖Apk‖2). We also recall that βi > 0,
for any i ≥ 1. Finally, in the above matrices L and B we assume (for the sake of
simplicity) that the Krylov-based method in [14] has performed all CG steps, with the
exception of only one planar iteration (namely the kth iteration—see [14] and [48]),
corresponding to have pTk Apk ≈ 0.

Then, our novel approach proposes to introduce the numeral grossone, as in [13,22–
24], and follows some guidelines from [12], in order to exploit a suitable matrix
factorization from (16), such that Lemma 4.1 is fulfilled. In this regard, consider
matrix B in (16) and the next technical result.

Lemma 5.1 Consider the matrix B in (16), and let βk > σ̄ > 0, for any k ≥ 0. Then,
the 2 × 2 submatrix

⎛

⎝
0

√
βk

√
βk ek+1

⎞

⎠

has the Jordan factorization

⎛

⎝
0

√
βk

√
βk ek+1

⎞

⎠ = Vk	kV
T
k , (18)
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with

Vk =

⎛

⎜⎜⎜
⎝

√
βk√

βk+λ2k

√
βk√

βk+λ2k+1

λk√
βk+λ2k

λk+1√
βk+λ2k+1

⎞

⎟⎟⎟
⎠

, (19)

where 	k = diag{λk, λk+1}.
Moreover, λk · λk+1 < 0, with λk, λk+1 ∈

{
ek+1±

√
e2k+1+4βk
2

}

, along with λk > 0

and λk+1 < 0. Finally, if ‖ri‖ ≥ ε, for any i ≤ k, then

√
βk + λ2k+1

−λk+1
≤ max

i
{|λi (A)|}1/2 + √

2

(‖Apk‖
ε

)1/2

< +∞, (20)

∣∣∣∣
λk

λk+1 − λk

∣∣∣∣ ≤ 1. (21)

Proof The first part of the proof follows after a short computation and observing that

det

⎛

⎝
0

√
βk

√
βk ek+1

⎞

⎠ = −βk < 0. (22)

As regards (20), since

λk+1 =
ek+1 −

√
e2k+1 + 4βk

2
,

we have

√
βk + λ2k+1

−λk+1
=

√√√√√√
βk + e2k+1

4 + e2k+1+4βk
4 − ek+1

√
e2k+1+4βk
2√

e2k+1+4βk−ek+1

2

=

√√√√√√
2βk + e2k+1 + 2βk − ek+1

√
e2k+1 + 4βk

√
e2k+1 + 4βk − ek+1

=

√√√√√√
−ek+1

√
e2k+1 + 4βk + e2k+1 + 4βk

√
e2k+1 + 4βk − ek+1
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=

√√√√√
−ek+1

[
(e2k+1 + 4βk) − e2k+1

] + 4βk

[√
e2k+1 + 4βk + ek+1

]

(e2k+1 + 4βk) − e2k+1

=

√√√√4βk

√
e2k+1 + 4βk

4βk
= (e2k+1 + 4βk)

1/4

≤ |ek+1|1/2 + √
2β1/4

k ,

and since βk = ‖Apk‖2/‖rk‖2, with ‖rk‖ ≥ ε, the relation

ek+1 = (Apk)
T A(Apk)/‖Apk‖2

yields the result.
Finally, as regards (21) note that

∣∣∣∣
λk

λk+1 − λk

∣∣∣∣ =
∣∣∣∣∣∣

ek+1 +
√
e2k+1 + 4βk

−2
√
e2k+1 + 4βk

∣∣∣∣∣∣

=
∣∣∣∣∣∣
−1

2

⎛

⎝ ek+1√
e2k+1 + 4βk

+ 1

⎞

⎠

∣∣∣∣∣∣
≤ 1

2
(1 + 1) = 1.

��
Then, replacing the factorization (18) into the expression of B in (16), we obtain

the equivalent factorization T = LBLT = L̄ B̄ L̄T , where

L̄ =

⎛

⎜⎜⎜⎜
⎝

L11 0 0

L21 Vk 0

0 L̄32 L33

⎞

⎟⎟⎟⎟
⎠

, B̄ =

⎛

⎜⎜⎜⎜
⎝

B11 0 0

0 	k 0

0 0 B33

⎞

⎟⎟⎟⎟
⎠

, (23)

where L11, L21 are defined in (13), L33 in (14), B11, B33 in (15) and

L̄32 =

⎛

⎜⎜⎜⎜⎜
⎝

(−√
βkβk+1 0

) · Vk
...

0

⎞

⎟⎟⎟⎟⎟
⎠

.

We remark that unlike the matrix B, now B̄ is a diagonal matrix, though L̄ has now
a slightly more complex structure than the matrix L . Note also that after an easy
computation, we have in L̄
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Table 3 Correspondence between quantities/vectors computed by the algorithm in [14] and the algorithm
CG① in [12]

Algorithm in [14] CG① in [12]

ri , i = 1, . . . , k ri , i = 1, . . . , k

rk+1 Apk
ri , i ≥ k + 2 ri , i ≥ k + 2 (neglecting the terms with s①)

pi , i = 1, . . . , k pi , i = 1, . . . , k

pk+1
Apk‖Apk‖

pi , i ≥ k + 2 pi , i ≥ k + 2 (neglecting the terms with s①)

αi , i = 1, . . . , k αi , i = 1, . . . , k

αi , i ≥ k + 2 αi , i ≥ k + 2 (neglecting the terms with s①)

βi , i = 1, . . . , k − 1 βi , i = 1, . . . , k − 1

βk
‖Apk‖2
‖rk‖2

βi , i ≥ k + 1 βi , i ≥ k + 1 (neglecting the terms with s①)

(
−√

βkβk+1 0
)

· Vk = −βk
√

βk+1

⎛

⎝ 1
√

βk + λ2k

1
√

βk + λ2k+1

⎞

⎠ , (24)

where (see [14])

βk = ‖rk+1‖2
‖rk‖2 = ‖Apk‖2

‖rk‖2 , βk+1 = ‖rk+2‖2
‖rk+1‖2 = ‖rk+2‖2

‖Apk‖2 .

Now, let us consider again the algorithm CG① in [12], and assume that at Steps k and
k + 1 it generated the coefficients αk and αk+1 in (9), when solving the linear system
(12), being pTk Apk ≈ 0 at Step k. In [12], we have already detailed the one-to-one
relationship between the quantities generated by the algorithms in [14] and in Table 2,
showing how CG① can be considered, to large extent, an extension of the CG to the
indefinite case. Table 3 specifically reports this relationship, showing how it can be
possible to compute all the quantities in (23) using CG①, in place of the algorithm
in [14]. Thus, similarly to the result obtained in (6), applying the CG, after n steps
of CG① we want to define an implicit matrix factorization for A as in (16), where
now the 2 × 2 matrix on the left-hand side of (18) is suitably replaced by the matrix
diag{1/αk , 1/αk+1}. Nowwe establish a full correspondence between the matrix	k

in (18) and (23), obtained by the algorithm in [14], and thematrix diag{1/αk , 1/αk+1}
from [12]. Since both αks① = 0 and αk+1/(s①) = 0, and by Lemma 5.1 λk > 0 with
λk+1 < 0, we can always find the 2 × 2 (diagonal) positive definite matrix Ck such
that
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⎛

⎜
⎝

1
αk s①

0

0 s①
αk+1

⎞

⎟
⎠ =

⎛

⎝
1

‖rk‖2 0

0 −‖Apk‖2

⎞

⎠ = Ck	kCk, (25)

where 	k is defined in Lemma 5.1 and

Ck =

⎛

⎜⎜
⎝

1√
λkαk s①

0

0
√

s①
λk+1αk+1

⎞

⎟⎟
⎠ . (26)

In practice, using CG① we would like to rearrange the matrices L̄ and B̄ in (23),
obtained by applying the algorithm in [14], so that the equalities T = LBLT =
L̄ B̄ L̄T hold and the block 	k in B̄ is suitably replaced by the left side of (25). Note
that the diagonal matrix on the left side of (25) is scaled with respect to the matrix
diag{1/αk , 1/αk+1}, by using terms containing ①. Moreover, it is worth mentioning
that by (8) and (9), both the diagonal entries of the matrix on the left side of (25) are
finite and not infinitesimal.

The rationale behind this choice is suggested by (11) and Lemma 4.1, where the
easy computation of the vectors z and ȳ is sought. Indeed, we shortly show that the
scaling in (25) both allows to easily find the final negative curvature direction d j in
Lemma 4.1, and ensures that for any j the norm ‖d j‖ is suitably bounded. This finally
implies that applying CG① and exploiting Table 3, we can fulfill Assumption 2.1
without recurring first to the algorithm in [14].

Now, from (26) and (9) we obtain

Ck =
⎛

⎜
⎝

1
‖rk‖√λk

0

0 ‖Apk‖√−λk+1

⎞

⎟
⎠ , (27)

showing that, apart from infinitesimals we ignored when writing (9), the diagonal
entries of Ck are independent of ①. Finally, by (25) and considering the matrix 	k in
Lemma 5.1, we obtain

VkC
−1
k

⎛

⎜
⎝

1
αk s①

0

0 s①
αk+1

⎞

⎟
⎠C−1

k Vk = Vk	kV
T
k .
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This also implies that we can now equivalently modify the nonsingular matrices in
(23) as

L̂ =

⎛

⎜⎜⎜⎜
⎝

L11 0 0

L21 VkC
−1
k 0

0 L̂32 L33

⎞

⎟⎟⎟⎟
⎠

, D̂ =

⎛

⎜⎜⎜⎜
⎝

B11 0 0

0 B̂22 0

0 0 B33

⎞

⎟⎟⎟⎟
⎠

, (28)

where L11 and L21 are defined in (13), L33 in (14), B11, B33 in (15) and

L̂32 =

⎛

⎜⎜⎜⎜⎜
⎝

(−√
βkβk+1 0

) · VkC−1
k

...

0

⎞

⎟⎟⎟⎟⎟
⎠

, B̂22 =
⎛

⎜
⎝

1
αk s①

0

0 s①
αk+1

⎞

⎟
⎠ ,

so that in Lemma 4.1 we have for matrix Tj the expression

Tj = LBLT = L̄ B̄ L̄T = L̂ D̂ L̂T .

We strongly remark that using CG① and relation (25), we have simplified the expres-

sion of D̄, replacing it with D̂. This is obtained at the cost of a slight modification
of matrix L̄ into L̂: We shortly prove that this arrangement can easily allow the com-
putation of a bounded negative curvature direction d j at x j . Once more we urge to
remark that the computation of L̂ and D̂ can be completely carried on replacing the
algorithm in [14] with CG①, as the equivalence/correspondence in Table 3 reveals.
(We highlight indeed that the iterate xk+2 in [14] and the iterate yk+2 in [12] coincide,
when neglecting the infinitesimal terms containing s①.) The next lemma proves that
L̂ in (28) is nonsingular under the assumptions in Lemma 4.1.

Lemma 5.2 Let the assumptions in Lemma 4.1 hold, with Tj = L̂ D̂ L̂T and L̂, D̂
defined in (28). Then, we have

VkC
−1
k =

⎛

⎜⎜⎜
⎝

‖rk‖√βkλk√
βk+λ2k

√−βkλk+1

‖Apk‖
√

βk+λ2k+1

‖rk‖λk√λk√
βk+λ2k

λk+1
√−λk+1

‖Apk‖
√

βk+λ2k+1

⎞

⎟⎟⎟
⎠

(−√
βkβk+1 0

) · VkC−1
k =

(
−‖rk+2‖‖Apk‖

‖rk‖
√

λk
βk+λ2k

− ‖rk+2‖
‖rk‖2

√
− λk+1

βk+λ2k+1

)
,

along with | det(L̂)| = 1.
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Proof The first two relations follow immediately from (27), Table 3 and recalling that
Ck is nonsingular. Moreover, since βk = ‖Apk‖2/‖rk‖2, note that in (28) we have

det(VkC
−1) = ‖rk‖λk+1

√−βkλkλk+1

‖Apk‖
√

βk + λ2k

√
βk + λ2k+1

− ‖rk‖λk√−βkλkλk+1

‖Apk‖
√

βk + λ2k

√
βk + λ2k+1

= 1√
βk

√
−βkλkλk+1

(βk + λ2k)(βk + λ2k+1)
(λk+1 − λk)

=
√

−λkλk+1

(βk + λ2k)(βk + λ2k+1)

[
−
√
e2k+1 + 4βk

]

= −
√

βk

√
e2k+1 + 4βk

√
(βk + λ2k)(βk + λ2k+1)

= −
√

βk

√
e2k+1 + 4βk

√
(−λkλk+1 + λ2k)(−λkλk+1 + λ2k+1)

= −
√

βk

√
e2k+1 + 4βk

√−λkλk+1(λk − λk+1)2)
= −

√
e2k+1 + 4βk

|λk − λk+1|

= −
√
e2k+1 + 4βk

√
e2k+1 + 4βk

= −1.

Therefore, | det(L̂)| = 1.
Now we are ready to compute at iterate x j the negative curvature direction d j

which complies with Assumption 2.1, exploiting the decomposition Tj = L̂ D̂ L̂T

from Lemma 4.1. ��
Proposition 5.1 Suppose n iterations of CG① algorithm are performed to solve New-
ton’s equation (2), at iterate x j , so that the decompositions

RT∇2 f (x j )R = T , T = L̂ D̂ L̂T

exist, where R is defined in (17), and L̂ alongwith D̂ is defined in (28). In the hypotheses
of Lemma 4.1, let z be the unit eigenvector corresponding to the (negative) smallest
eigenvalue of D̂ and let ŷ be the solution of the linear system L̂T y = z. Then, the
vector d j = Rŷ is bounded and satisfies Assumption 2.1. In addition, the computation
of d j requires the storage of at most two n-real vectors.

Proof First observe that by [53], also in case at the iterate x j the Hessian matrix
∇2 f (x j ) is indefinite, there exists atmost one step k, with 0 ≤ k ≤ n, such that inCG①
wemight have pTk ∇2 f (x j )pk = 0. Thus, similarly to the rest of the paper, without loss
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of generality in this proof we assume that possibly the equality pTk ∇2 f (x j )pk = 0

only holds at step k. Moreover, the matrix D̂ is diagonal, which implies that the unit
vector associated with its i th eigenvalue μi (D̂) is given by ei .

To fulfill Assumption 2.1, we first need to compute the vector ŷ in Lemma 4.1, i.e.,
we have to solve the linear system

L̂T y = z, (29)

being z ∈ R
n the unit eigenvector associated with the (negative) smallest eigenvalue of

D̂. To this purpose, by Lemma 5.2 the vector ŷ exists and is bounded. Now, we distin-
guish among the next four subcases, where we use the notation k̂ ∈ argmini {μi (D̂)},
i.e., k̂ is an index corresponding to the smallest eigenvalue μk̂(D̂) of D̂.

(I) In this subcase, we assume k̂ /∈ {k, k + 1} along with k̂ < k. In particular, since
D̂ is diagonal, then (29) reduces to L̂T y = ek̂ , i.e., by Lemma 5.2 and Table 3

−√
β1 · y2 + y1 = 0
...

−√
βk̂−1 · yk̂ + yk̂−1 = 0

−√
βk̂ · yk̂+1 + yk̂ = 1

−√
βk̂+1 · yk̂+2 + yk̂+1 = 0
...

−√
βk−1 · yk + yk−1 = 0

‖rk‖√βkλk√
βk+λ2k

· yk + ‖rk‖λk√λk√
βk+λ2k

· yk+1

−‖Apk‖‖rk+2‖
‖rk‖

√
λk

βk+λ2k
· yk+2 = 0

√−λk+1βk

‖Apk‖
√

βk+λ2k+1

· yk + λk+1
√−λk+1

‖Apk‖
√

βk+λ2k+1

· yk+1

−‖rk+2‖
‖rk‖2

√
− λk+1

βk+λ2k+1
· yk+2 = 0

−√
βk+2 · yk+3 + yk+2 = 0
...

−√
βn−1 · yn + yn−1 = 0

yn = 0,

whose solution ŷ ∈ R
n can be explicitly computed recalling that, as in Table 3,

rk+1 = Apk , βi = ‖ri+1‖2/‖ri‖2 and backtracking from the value of ŷn to ŷ1,
we have

ŷn = · · · = ŷk̂+1 = 0; ŷk̂ = 1; ŷi = ‖rk̂‖
‖ri‖ , i = k̂ − 1, . . . , 1.

Finally, as in Lemma 4.1 and recalling that for the algorithm CG① we have
pi = ri+βi−1 pi−1, for any i ≥ 1, the corresponding negative curvature direction
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d j is given by

d j = R j ŷ = ‖rk̂‖
k̂∑

i=1

ri
‖ri‖2 = pk̂

‖rk̂‖
,

which exactly coincides with the proposal in [9], when k̂ /∈ {k, k+1} along with
k̂ < k. Finally, it is easily seen that by the conditions ‖ri‖ ≥ ε, from algorithm
CG①, the quantity ‖d j‖ is bounded and the computation of d j simply requires
the storage of the unique vector pk̂/‖rk̂‖.

(II) In this subcase, we assume k̂ /∈ {k, k + 1} along with k̂ > k + 1. Since again D̂
is diagonal, then (29) reduces to

−√
β1 · y2 + y1 = 0
...

−√
βk−1 · yk + yk−1 = 0

‖rk‖√βkλk√
βk+λ2k

· yk + ‖rk‖λk√λk√
βk+λ2k

· yk+1

−‖Apk‖‖rk+2‖
‖rk‖

√
λk

βk+λ2k
· yk+2 = 0

√−λk+1βk

‖Apk‖
√

βk+λ2k+1

· yk + λk+1
√−λk+1

‖Apk‖
√

βk+λ2k+1

· yk+1

−‖rk+2‖
‖rk‖2

√
− λk+1

βk+λ2k+1
· yk+2 = 0

−√
βk+2 · yk+3 + yk+2 = 0
...

−√
βk̂−1 · yk̂ + yk̂−1 = 0

−√
βk̂ · yk̂+1 + yk̂ = 1

−√
βk̂+1 · yk̂+2 + yk̂+1 = 0
...

−√
βn−1 · yn + yn−1 = 0

yn = 0.

Thus, again backtracking from the value of ŷn to ŷk̂+1 we first obtain

ŷn = · · · = ŷk̂+1 = 0.

Then, we have also

ŷk̂ = 1; yi = ‖rk̂‖
‖ri‖ , i = k̂ − 1, . . . , k + 2,
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while for ŷi , i ∈ {k + 1, k}, we have from above the relations

‖rk‖√βk · ŷk + ‖rk‖λk · ŷk+1 = ‖Apk‖‖rk+2‖
‖rk‖

‖rk̂‖‖rk+2‖√
βk

‖Apk‖ · ŷk + λk+1
‖Apk‖ · ŷk+1 = ‖rk+2‖

‖rk‖2
‖rk̂‖‖rk+2‖ .

Observing that by Lemma 5.1 λk = λk+1, and recalling that in Table 3
√

βk =
‖Apk‖/‖rk‖, we obtain

ŷk+1 = 0, ŷk = ‖rk̂‖
‖rk‖ ,

which allow to backtrack and compute also the remaining entries ŷk−1, . . . , ŷ1
of vector ŷ, being

ŷi = ‖rk̂‖
‖ri‖ , i = k − 1, . . . , 1.

On the overall, the final computation of the negative curvature direction d j yields
for this subcase

d j = R j ŷ = ‖rk̂‖
k̂∑

i=1,i =k+1

ri
‖ri‖2 .

Finally, following the guidelines in Table 2 of [9], the conditions ‖ri‖ ≥ ε from
algorithm CG① yield that ‖d j‖ is bounded. Moreover, with a similar analysis in
[9] the computation of d j requires the storage of just two vectors.

(III) In this subcase, we assume k̂ = k. However, note that this subcase can never
occur, since by (25)

μk̂(D̂) = 1

αks①
= 1

‖rk‖2 > 0

and therefore no negative curvature direction can be provided from the current
step k̂.

(IV) As a final subcase, we assume k̂ = k + 1, i.e., by (25) μk̂(D̂) = s①/αk+1 =
−‖Apk‖2 < 0. Again, since D̂ is diagonal, then the linear system (29) reduces
to L̂T y = ek̂ (or equivalently L̂T y = ek+1), with
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−√
β1 · y2 + y1 = 0
...

−√
βk−1 · yk + yk−1 = 0

‖rk‖√βkλk√
βk+λ2k

· yk + ‖rk‖λk√λk√
βk+λ2k

· yk+1

−‖Apk‖‖rk+2‖
‖rk‖

√
λk

βk+λ2k
· yk+2 = 0

√−λk+1βk

‖Apk‖
√

βk+λ2k+1

· yk + λk+1
√−λk+1

‖Apk‖
√

βk+λ2k+1

· yk+1

−‖rk+2‖
‖rk‖2

√
− λk+1

βk+λ2k+1
· yk+2 = 1

−√
βk+2 · yk+3 + yk+2 = 0
...

−√
βn−1 · yn + yn−1 = 0

yn = 0.

Now, we have for the last n − k̂ entries of vector ŷ the expression

ŷn = · · · = ŷk̂+1 = 0.

On the other hand, the condition ŷk̂+1 = ŷk+2 = 0 and the above relation

‖rk‖√βkλk√
βk + λ2k

· yk + ‖rk‖λk√λk√
βk + λ2k

· yk+1 − ‖Apk‖‖rk+2‖
‖rk‖

√
λk

βk + λ2k
· yk+2 = 0

yield

ŷk = − λk√
βk

ŷk+1.

Recalling that now k̂ = k + 1 and in Table 3 ‖Apk‖ = ‖rk+1‖ = ‖rk̂‖, then

ŷk+1 = ‖rk̂‖
λk+1 − λk

√
βk + λ2k+1

−λk+1
.

As a consequence,

ŷk = − λk√
βk

· ‖rk̂‖
λk+1 − λk

√
βk + λ2k+1

−λk+1
= − λk‖rk̂−1‖

λk+1 − λk

√
βk + λ2k+1

−λk+1
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and for ŷk̂−2, . . . , ŷ1, we have

ŷi = −‖rk̂−1‖2
‖ri‖ · λk

λk+1 − λk

√
βk + λ2k+1

−λk+1
, i = k̂ − 2, . . . , 1.

Finally, the overall negative curvature direction d j becomes now

d j = R j ŷ

= ‖rk̂−1‖2
⎡

⎣
k̂−2∑

i=1

− ri
‖ri‖2 · λk

λk+1 − λk

√
βk + λ2k+1

−λk+1

⎤

⎦

− 1

λk+1 − λk

√
βk + λ2k+1

−λk+1

(
λk̂−1rk̂−1 − rk̂

)

= − λk

λk+1 − λk

√
βk + λ2k+1

−λk+1
βk−1 pk−1

− 1

λk+1 − λk

√
βk + λ2k+1

−λk+1
(λkrk − rk+1)

= − λk

λk+1 − λk

√
βk + λ2k+1

−λk+1

[
βk−1 pk−1 + rk − rk+1

λk

]

= − λk

λk+1 − λk

√
βk + λ2k+1

−λk+1

[
pk − Apk

λk

]
,

whose computation is well posed, since λk+1 < 0. Again, by (20)–(21), the fact
that λ̄ > 0 in Lemma 4.1 and the other hypotheses, the quantity ‖d j‖ is bounded.
In addition, the computation of d j evidently needs the storage of just two n-real
vectors. ��

Observation 5.1 We remark that the computation of the negative curvature direction
d j requires at most the additional storage of a couple of vectors, which confirms the
competitiveness of the storage proposed in [9]. Thus, the approach in this paper does
not only prove to be applicable to large-scale problems, but it also simplifies the theory
in [9], which is currently in our knowledge the only proposal of iterative computation
of negative curvatures for large-scale problems, which does not need any recomputing
(as in [3]), andwhich requires neither a fullmatrix factorization nor anymatrix storage.

6 Numerical Experience

In this section, we report the results of a numerical experience concerning the adoption
of our approach, within the framework of truncated Newton methods for large-scale
unconstrained optimization. We considered the truncated Newton method proposed

123



578 Journal of Optimization Theory and Applications (2020) 186:554–589

in [9], where we replaced the Krylov-based iterative procedure therein by the CG①
procedure. The codes were written in Fortran compiled with Gfortran 6 under Linux
Ubuntu 18.04, and the runs were performed on a PC with Intel Core i7-4790K quad-
core 4.00 GHz Processor and 32 GB RAM.

Now we strongly remark the guidelines and the limits of the numerical experience
reported in this section:

– we show how to detect and assess negative curvatures for the Hessian matrix
∇2 f (x j ), at the current iterate x j ;

– we compute negative curvatures which could be able to guarantee the overall
convergence of the optimization method toward second-order critical points;

– we do not claim that our proposal shows better numerical results with respect to
[9], being the main focus of this paper on theoretical issues. Thus, our numerical
experience only tests the reliability and the effectiveness of our method, rather
than proposing a numerical comparison with the current literature;

– we also intend to check for the quality of the stationary points detected by our
approach.

In particular, we considered all the 112 large-scale unconstrained test problems in
CUTEst [54] suite. The algorithm performs a classic nested loop of outer–inner itera-
tions. Thus, at the current j th outer iteration the algorithm iteratively solves Newton’s
equation ∇2 f (x j )s = −∇ f (x j ), performing a certain number of inner iterations. To
build an approximate solution s j of Newton’s equation, and possibly a negative cur-
vature direction, inner iterations are stopped whenever the following truncation rule
is satisfied

‖∇2 f (x j )s j + ∇ f (x j )‖ ≤ η j‖∇ f (x j )‖,

being {η j } a forcing sequence, with η j → 0. The condition η j → 0 guarantees super-
linear convergence of the overall method, when close enough to the final stationary
point. As regards settings and parameters of the linesearch procedure we adopted,
as well as the overall stopping criterion, the reader can refer to [9]. (We also recall
that, unlike in [9], here we preferred not to include any nonmonotonicity in the used
algorithm, in order to clearly distinguish the contribution from our idea.) At each inner
iteration k ≥ 1, the algorithm in Table 2 detects a curvature of the objective function,
by computing the term pTk ∇2 f (x j )pk , a negative value of the last quantity indicating
a negative curvature direction.

We compared two truncated Newton methods: the first (i) not including the use
of negative curvature directions (namely NoNegCurv), so that convergence to simple
stationary points could be guaranteed; the second (ii) including negative curvatures
(namely NegCurv) which satisfy Assumption 2.1, implying convergence to stationary
points where second-order necessary optimality conditions are fulfilled. Thus, by a
comparison between them, we might have expected:

(a) (ii) to be more efficient than (i) in terms of the computational effort (in our large-
scale setting we measured the computational effort through the number of inner
iterations, which are representative of the overall computational burden, including
CPU time);
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(b) the quality of the solutions detected by (ii), i.e., the value of the objective function
at the solution, is expected to be on average not worse than in the case of (i), since
for (ii) the solution points satisfy additional theoretical properties;

(c) the stationarity (measured by ‖∇ f (x∗)‖) of the final solution detected using (ii)
is possibly expected to be competitive with respect to (i). This is because in
a neighborhood of the solution point, our proposal is expected to collect more
information on the objective function.

The above considerations are to large extent confirmed by our numerical experience
as detailed in the following.

First, note that using (ii), we detected negative curvatures on 40 test problems out
of 112; of course, this does not imply that the remaining 72 test problems only include
convex functions. It rather implies that on 72 problems, no regions of concavity for
the objective function were encountered. For these 40 test problems, the obtained
results in terms of number of (outer) iterations (it), number of function evaluations
(nf), number of inner iterations (inner-it), optimal function value ( f (x∗)), gradient
norm at the optimal point (‖g(x∗)‖), solution time in seconds (time), are reported in
Tables 4 and 5. In particular, for each test problem, we report results using both the
NoNegCurv method (top row) and the NegCurv method (bottom row).

By observing these results, we first note that on two test problems both the algo-
rithms fail to converge within the maximum CPU time of 900 s. The comparison on
the remaining test problems shows that in most cases algorithmNegCurv performs the
best in terms of solution time and inner iterations, confirming expectation (a) which is
our main goal. The results highlight only one test problem (GENHUPMS 1000) where
the use of NegCurv yields a significant worsening of the performance. We easily real-
ize that including our procedure to compute negative curvature directions allows to
both speed up the overall convergence and decrease the number of inner iterations.

The detailed results only partially validate also (b) and (c). As regards (b), since
in a few test problems the algorithms converge to different points, a sound statistical
analysis cannot be given, though a better optimal value is sometimes observed by using
NegCurv algorithm. Similarly, as concerns (c), the values of ‖∇ f (x∗)‖ provided by
NoNegCurv and NegCurv seem to a large extent comparable on this test set.

To have an overview of the effectiveness and the robustness of the approach we
propose in this paper, we now consider summary results by using performance profiles
[55]. The performance profiles represent a popular and widely used tool for providing
objective information when benchmarking optimization algorithms. Their meaning
can be summarized as follows: Suppose you have a set of solvers S to be compared
on a set of test problems P .

For each problem p ∈ P and solver s ∈ S, define tps the statistic obtained by
running solver s on problem p. Namely, tps ≥ 0 is a performance measure of interest,
e.g., solution time, number of function evaluations, etc. The performance on problem
p by solver s is compared with the best performance by any solver on this problem
by means of the performance ratio

rps = tps
{tps | s ∈ S} .
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Moreover, an upper bound r̄ is chosen such that rps ≤ r̄ for all s ∈ S and p ∈ P and
if a solver s fails to solve problem p then rps is set to r̄ . The performance profile of
the solver s is the function

ρs(τ ) =
∣∣{p ∈ P | tps ≤ τ }∣∣

|S| ,

namely the cumulative distribution function for the performance ratio.
In particular, we report in Figs. 1 (full profile) and 2 (detail profile) the performance

profiles comparing NoNegCurv and NegCurv algorithms in terms of inner iterations.
The test set considered includes the 40 test problems reported in Tables 4 and 5.

The detailed plot reported in Fig. 2 clearly shows the effectiveness of NegCurv
algorithm with respect toNoNegCurv. Indeed, as an example, let us consider the value
of abscissa 1.2 in Fig. 2. The plots show that the NegCurv algorithm is able to solve
about 62% of the test problems within 1.2 times the number of inner iterations of the
best algorithm. Conversely, theNoNegCurv algorithm is able to solve up to 78% of the
test problems within the same number of inner iterations. On the other hand, in terms
of robustness the algorithms can be considered comparable with a slight preference
for NegCurv algorithm as evidenced by Fig. 1. The last consideration follows from
the observation that for values of the abscissa parameter larger than 3.5, the two plots
basically tend to overlap.

7 Conclusions

We proposed a novel approach for the efficient solution of large-scale unconstrained
optimization problems, where the detected solutions likely are endowed with strong
theoretical properties. Our proposal exploits the simplicity of an algebra associated
with the numeral grossone, which was recently introduced in the literature to handle
infinite and infinitesimal quantities.

We were able to extend the results in [9] in view of a theoretical simplification,
avoiding to make reference to Planar-CG methods which require a more complex
analysis. The theory in this paper allows us to guarantee that the iterative computation
of negative curvatures does not need anymatrix storage, while preserving convergence
toward points satisfying second-order necessary optimality conditions.

Then,we also providednumerical results,which show the efficiencyof our proposal.
We remark that the focus of this paper is not on anumerical comparison amongdifferent
algorithmswhich exploit negative curvature directions. Rather, we paired the approach
in [9] with a novel paradigm provided by grossone, in light of preserving numerical
efficiency within a sound theoretical framework, in dealing with nonconvex problems.
This is the first stage toward a more complete numerical experience where the iterative
algorithm CG① can be fully tested, including even more challenging problems from
real-world applications.

Observe that the proposed approach is independent undermultiplication of the func-
tion by a positive scaling constant or adding a shifting constant. This is an important
property that is specially exploited in the global optimization framework (see, e.g.,
[24]), since strongly homogeneous algorithms are definitely appealing. Furthermore,
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the local solver described in Sect. 6 may be considered to enhance the efficiency of
the algorithm in [56], simply replacing the local solver used therein by our proposal.
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