We investigate the phase diagram and the nature of the phase transitions of three-dimensional monopole-free CP^{N-1} models, characterized by a global U(N) symmetry, a U(1) gauge symmetry, and the absence of monopoles. We present numerical analyses based on Monte Carlo simulations for N=2, 4, 10, 15, and 25. We observe a finite-temperature transition in all cases, related to the condensation of a local gauge-invariant order parameter. For N=2 we are unable to draw any definite conclusion on the nature of the transition. The results may be interpreted in terms of either a weak first-order transition or a continuous transition with anomalously large scaling corrections. However, the results allow us to exclude that the transition belongs to the O(3) vector universality class, as it occurs in the standard three-dimensional CP^{1} model without monopole suppression. For N=4,10,and15, the transition is of first order, and significantly weaker than that observed in the presence of monopoles. For N=25 the results are consistent with a conventional continuous transition. We compare our results with the existing literature and with the predictions of different field-theory approaches. They are consistent with the scenario in which the model undergoes continuous transitions for large values of N, including N=∞, in agreement with analytic large-N calculations for the N-component Abelian-Higgs model.

Three-dimensional monopole-free CP^{N-1} models / Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - 101:6-1(2020). [10.1103/PhysRevE.101.062136]

Three-dimensional monopole-free CP^{N-1} models

Pelissetto A.;
2020

Abstract

We investigate the phase diagram and the nature of the phase transitions of three-dimensional monopole-free CP^{N-1} models, characterized by a global U(N) symmetry, a U(1) gauge symmetry, and the absence of monopoles. We present numerical analyses based on Monte Carlo simulations for N=2, 4, 10, 15, and 25. We observe a finite-temperature transition in all cases, related to the condensation of a local gauge-invariant order parameter. For N=2 we are unable to draw any definite conclusion on the nature of the transition. The results may be interpreted in terms of either a weak first-order transition or a continuous transition with anomalously large scaling corrections. However, the results allow us to exclude that the transition belongs to the O(3) vector universality class, as it occurs in the standard three-dimensional CP^{1} model without monopole suppression. For N=4,10,and15, the transition is of first order, and significantly weaker than that observed in the presence of monopoles. For N=25 the results are consistent with a conventional continuous transition. We compare our results with the existing literature and with the predictions of different field-theory approaches. They are consistent with the scenario in which the model undergoes continuous transitions for large values of N, including N=∞, in agreement with analytic large-N calculations for the N-component Abelian-Higgs model.
2020
Critical phenomena; gauge theories; Monte Carlo simulations
01 Pubblicazione su rivista::01a Articolo in rivista
Three-dimensional monopole-free CP^{N-1} models / Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - 101:6-1(2020). [10.1103/PhysRevE.101.062136]
File allegati a questo prodotto
File Dimensione Formato  
Pelissetto_Three-dimensional_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 676.75 kB
Formato Adobe PDF
676.75 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1433721
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact