We investigate the phase diagram and finite-temperature transitions of three-dimensional scalar SO(N_{c}) gauge theories with N_{f}≥2 scalar flavors. These models are constructed starting from a maximally O(N)-symmetric multicomponent scalar model (N=N_{c}N_{f}), whose symmetry is partially gauged to obtain an SO(N_{c}) gauge theory, with O(N_{f}) or U(N_{f}) global symmetry for N_{c}≥3 or N_{c}=2, respectively. These systems undergo finite-temperature transitions, where the global symmetry is broken. Their nature is discussed using the Landau-Ginzburg-Wilson (LGW) approach, based on a gauge-invariant order parameter, and the continuum scalar SO(N_{c}) gauge theory. The LGW approach predicts that the transition is of first order for N_{f}≥3. For N_{f}=2 the transition is predicted to be continuous: It belongs to the O(3) vector universality class for N_{c}=2 and to the XY universality class for any N_{c}≥3. We perform numerical simulations for N_{c}=3 and N_{f}=2,3. The numerical results are in agreement with the LGW predictions.

Three-dimensional phase transitions in multiflavor lattice scalar SO(N_{c}) gauge theories / Bonati, C.; Pelissetto, A.; Vicari, E.. - In: PHYSICAL REVIEW. E. - ISSN 2470-0053. - 101:6-1(2020).

Three-dimensional phase transitions in multiflavor lattice scalar SO(N_{c}) gauge theories

Pelissetto A.;
2020

Abstract

We investigate the phase diagram and finite-temperature transitions of three-dimensional scalar SO(N_{c}) gauge theories with N_{f}≥2 scalar flavors. These models are constructed starting from a maximally O(N)-symmetric multicomponent scalar model (N=N_{c}N_{f}), whose symmetry is partially gauged to obtain an SO(N_{c}) gauge theory, with O(N_{f}) or U(N_{f}) global symmetry for N_{c}≥3 or N_{c}=2, respectively. These systems undergo finite-temperature transitions, where the global symmetry is broken. Their nature is discussed using the Landau-Ginzburg-Wilson (LGW) approach, based on a gauge-invariant order parameter, and the continuum scalar SO(N_{c}) gauge theory. The LGW approach predicts that the transition is of first order for N_{f}≥3. For N_{f}=2 the transition is predicted to be continuous: It belongs to the O(3) vector universality class for N_{c}=2 and to the XY universality class for any N_{c}≥3. We perform numerical simulations for N_{c}=3 and N_{f}=2,3. The numerical results are in agreement with the LGW predictions.
File allegati a questo prodotto
File Dimensione Formato  
Bonati_Three-dimensional_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 485.99 kB
Formato Adobe PDF
485.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1433716
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact