This paper presents a control solution for the optimal network selection problem in 5G heterogeneous networks. The control logic proposed is based on multi-agent Friend-or-Foe Q-Learning, allowing the design of a distributed control architecture that sees the various access points compete for the allocation of the connection requests. Numerical simulations validate conceptually the approach, developed in the scope of the EU-Korea project 5G-ALLSTAR
Network Selection in 5G Networks Based on Markov Games and Friend-or-Foe Reinforcement Learning / Giuseppi, Alessandro; De Santis, Emanuele; Delli Priscoli, Francesco; Won, Seok Ho; Choi, Taesang; Pietrabissa, Antonio. - (2020), pp. 1-5. (Intervento presentato al convegno 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) tenutosi a Seoul; South Korea) [10.1109/WCNCW48565.2020.9124723].
Network Selection in 5G Networks Based on Markov Games and Friend-or-Foe Reinforcement Learning
Giuseppi, Alessandro
;De Santis, Emanuele;Delli Priscoli, Francesco;Pietrabissa, Antonio
2020
Abstract
This paper presents a control solution for the optimal network selection problem in 5G heterogeneous networks. The control logic proposed is based on multi-agent Friend-or-Foe Q-Learning, allowing the design of a distributed control architecture that sees the various access points compete for the allocation of the connection requests. Numerical simulations validate conceptually the approach, developed in the scope of the EU-Korea project 5G-ALLSTARFile | Dimensione | Formato | |
---|---|---|---|
Giuseppi_Preprint_Network_2020.pdf
accesso aperto
Note: https://ieeexplore.ieee.org/document/9124723
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
537.8 kB
Formato
Adobe PDF
|
537.8 kB | Adobe PDF | |
Giuseppi_Network_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
303.61 kB
Formato
Adobe PDF
|
303.61 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.