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Abstract— This paper presents a control solution for the 

optimal network selection problem in 5G heterogeneous networks. 

The control logic proposed is based on multi-agent Friend-or-Foe 

Q-Learning, allowing the design of a distributed control 

architecture that sees the various access points compete for the 

allocation of the connection requests. Numerical simulations 

validate conceptually the approach, developed in the scope of the 

EU-Korea project 5G-ALLSTAR. 
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I. INTRODUCTION  

The problem of Network Selection arises in the framework 
of the so-called “heterogeneous networks”, modern 
communication scenarios in which several different Radio 
Access Technologies (RATs) are available to connect a user 
with the Core Network (CN). In such networks, when a new 
connection is established, a decision regarding which Access 
Point (AP) to utilize shall be taken by either the UE or the 
network itself, based on a feedback-based analysis of the 
network state.  

Different criteria (e.g., congestion state, power efficiency, 
reliability) may be utilized for the selection, and, based on the 
scope of the information gathered for the analysis, it is possible 
to identify three different classes of approaches[1]: 

• User-Centric Approach: in which the User Equipment 
(UE) monitors the APs state and takes its connection 
decisions based on some thresholds-based 
performance parameters (e.g. Signal to Noise Ratio) 
measurable locally. In advanced scenarios, the UE 
could consider other RATs characteristics (e.g. 
coverage, user preferences, …) to better satisfy the 
application and user needs. 

• RAN-Assisted Approach: in this approach, an 
information exchange is done between the AP and the 
UE, so that the latter can select the one it prefers based 
on a broader feedback that may capture aspects not 
locally measurable, such the congestion level on the 
specific RATs, their expected resource allocation and 
their predicted/historical connection reliability.  

• RAN-Controlled Approach: the previous approaches 
were user-centric by nature, and consequently could 
only attain a sub-optimal solution to the network 
selection problem, in this approach the decision is 
taken directly by the Radio Access Network (RAN), a 
controller that oversees the functioning of the various 
RATs that constitute the Access Network. The 
decision taken by the RAN can either be centralised or 
distributed, as the RAN itself that may have some 
functionalities distributed over the various RATs.  
In this approach, the UEs may be configured to report 
radio measurements on their local radio environment 
to integrate the feedback available to the centralised 
network controller. This solution is the one adopted by 
3GPP for addressing dual-connectivity issues.  

The solution presented in this paper can be classified as a 
control strategy of the RAN-Controlled category, characterised 
by the distribution of the control logic over the controller of the 
various RATs controllers that regulate the APs connection 
admittance logics, so that the network resources available for the 
connection are optimally exploited.  

From a methodological point of view, several approaches 

were investigated in the literature for the network selection 

problem, spacing from solutions based on Multiple Attribute 

Decision Making (MADM) [2], [3], to Fuzzy Logic control 

systems [4], and Game Theory-based approaches [5], [6]. 

Additionally, Markov Decision Processes (MDPs) and 

Reinforcement Learning (RL) were tested, among the others, in 

[7] and [8]. 

The proposed approach utilizes results from both RL and 
Game Theory in a multi-agent framework. The problem will be 
modelled in such a way that the distributed RAT controllers will 
compete among each other for being selected to serve the 
connection requests. The overall goal of the control strategy will 
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be the optimal usage of network resources, without relying on 
centralized control approaches – as, for example, with a 
common least loaded allocation logic which assigns the 
upcoming connections to the RAT with the lowest resource 
usage. In this regard, the present paper employs the so-called 
“friend-or-foe Q-learning” algorithm to govern the network 
according to an adversarial Nash strategy. 

II. PRELIMINARIES ON LEARNING MARKOV GAMES 

A. Markov Games and Nash Equilibria 

A Markov Game among 𝑁 players is defined as the tuple 
[10] 〈𝑆, 𝒜, 𝑇, ℛ, 𝛾〉, where: 

• 𝑆 is the finite state space. 

• 𝒜 = {𝐴𝑖 , 𝑖 = 1, … , 𝑁}  is the collection of the 
action sets available to the various players 𝑖. 

• 𝑇(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑠′): : 𝑆 × 𝐴1 × 𝐴2 × … × 𝐴𝑁 ×
𝑆 → ℝ  is the state transition function, which 
describes the transaction probability between the 
two states 𝑠 and 𝑠′ when the agents take the actions 
𝑎1, 𝑎2, … , 𝑎𝑁. 

• ℛ = {𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁): 𝑆 × 𝐴1 × 𝐴2 × … ×
𝐴𝑁 → ℝ, 𝐴𝑖 = {𝑎𝑖} }  is the collection of reward 
functions that attribute a reward to each agent when 
they take actions 𝑎1, 𝑎2, … , 𝑎𝑁 and the system is in 
state 𝑠. 

• 0 ≤ 𝛾 < 1 is the discount factor that captures the 
trade-off between short-term and long-term 
performances sought by the agents. 

In this work we consider the so-called general sum games, 
meaning that no assumption is made on the cumulative reward 
attained by the agents, contrary to zero-sum games. 

A policy 𝜋𝑖(𝑠): 𝑆 → ℝ#(𝐴𝑖) is a function that maps the state 
of the system into a probability distribution over the actions of 
player 𝑖 . Each player is associated with a (state,action)-value 
function 𝑄𝑖  [11], [12], defined as  

𝑄𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁) = 𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁) +  
+ 𝛾 ∑ 𝑇(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁 , 𝑠′)𝑄𝑖(𝑠′, 𝜋1, 𝜋2, … , 𝜋𝑁)𝑠′   (1) 

in which 𝑄𝑖(𝑠′, 𝜋1, 𝜋2, … , 𝜋𝑁) is the weighted sum of the 𝑄𝑖’s 
according to the policies 𝜋𝑖 ’s. For their definition, the 
(state,action)-value functions represent the expected discounted 
reward attained over time by the players starting from state 𝑠, 
taking actions 𝑎1, 𝑎2, … , 𝑎𝑁  and following the policies 
𝜋1, 𝜋2, … , 𝜋𝑁 from there on. The goal of the controllers that will 
determine the policy of each agent is the one of maximizing its 
own value function unilaterally (i.e., without cooperation). 

An important concept to introduce in the framework of 
Markov Games is the one of adversarial Nash equilibria, which 
are a set of policies 𝜋1, 𝜋2, … , 𝜋𝑖′, … , 𝜋𝑁  characterized by the 
following two properties [12]: 

• no player can improve its policy unilaterally, i.e., 

𝑅𝑖(𝑠, 𝜋1, 𝜋2, … , 𝜋𝑖 , … , 𝜋𝑁) ≥ 𝑅𝑖(𝑠, 𝜋1, 𝜋2, … , 𝜋𝑖′, … , 𝜋𝑁) 

• no player sees its reward lowered by a change in the 
policies of the other players, i.e., 

𝑅𝑖(𝑠, 𝜋1, 𝜋2, … , 𝜋𝑖 , … , 𝜋𝑁) ≤ 𝑅𝑖(𝑠, 𝜋1′, 𝜋2′, … , 𝜋𝑖 , … , 𝜋𝑁′) 

B. Multi-Agent Reinforcement Learning 

In scenarios in which the agents are not provided with a 
complete and accurate model of the system, model-free control 
solutions as Reinforcement Learning (RL) [11] have to be 
implemented to attain the desired system behaviour. 

The attractiveness of RL in Multi-agent scenarios is due to 
the fact that it allows the agent 𝑖  behaviour, described by its 
policy 𝜋𝑖, to adapt to the strategy employed by the other agents. 
This capability becomes of crucial importance when the various 
agents compete one against each other, as each agent has no 
incentive to share information regarding its own configuration 
with the others. Nevertheless, RL also allows the agent to learn 
about the environment characteristics by directly interacting 
with it, meaning that no explicit knowledge of the functions 𝑇 
and 𝑅𝑗 , 𝑗 = 1, … , 𝑁  is assumed or necessary for reaching an 

optimal control strategy. 

In this paper, the Friend-or-Foe Q-Learning algorithm from 
[12] is employed in its adversarial variant. The additional degree 
of information that agent 𝑖  requires other than the feedback 
observation of the tuple 〈𝑠, 𝑎1, … , 𝑎𝑁 , 𝑠′, 𝑟𝑖〉 is the classification 
of the other players as either friends (cooperating agents that try 
to maximise their rewards jointly) or foes (competing agents that 
try to maximise their own rewards unilaterally and, 
consequently, to minimise player 𝑖’s reward). 

In this algorithm, each agent 𝑖 learns its (state,action)-value 
function 𝑄𝑖  according to the following rule: 

𝑄𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁) = (1 − 𝛼(𝑡))𝑄𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑁) + 

+𝛼(𝑡)(𝑟𝑖 + 𝛾 𝑁𝑎𝑠ℎ𝑖(𝑠, 𝑄1, 𝑄2, … , 𝑄𝑁))  ()  

where 𝑁𝑎𝑠ℎ𝑖(𝑠, 𝑄1, 𝑄2, … , 𝑄𝑁) is computed as ([12]) 

𝑁𝑎𝑠ℎ𝑖(𝑠, 𝑄1, 𝑄2, … , 𝑄𝑁) = max
𝜋∈Π(𝐴1×… ×𝐴𝑘)

min
[𝑎𝑘,…,𝑎𝑁]∈(𝐴𝑘+1×… ×𝐴𝑁)

 

∑ 𝜋(𝑎1) ⋅⋅⋅ 𝜋(𝑎𝑘)𝑄𝑖(𝑠, 𝑎1, … , 𝑎𝑁)[𝑎𝑘,…,𝑎𝑁]∈(𝐴𝑘+1×… ×𝐴𝑁)  (3) 

In (3), it is assumed, without loss of generality, that the 
players 1, … , 𝑘 cooperate with agent 𝑖 and players 𝑘 + 1, … , 𝑁 
are its foes. The sequence 0 ≤ 𝛼(𝑡) < 1  represents the 
evolution, over time, of the learning rate of the agents. Under 
the hypothesis that that ∑ 𝛼(𝑡) = +∞𝑡  and ∑ 𝛼(𝑡)2

𝑡 < +∞ 
[11], Theorem 6 in [12] proves that Foe Q-Learning (i.e., in the 
case in which all agents are foes) converges to an adversarial 
equilibrium, provided that such an equilibrium exists.  

III. MODELLING NETWORK SELECTION AS A MARKOV GAME 

As already introduced, the network selection problem will 
be modelled as a Markov Game in which each AP is a competing 
player. 



A. State Space 

The state of the network can be represented by the 
percentage of occupied resources on each of the APs. In order to 
have a finite number of states, a possible solution is to quantize 
the percentage of resources with a factor 𝑞. The set of states is 
then defined as: 

𝑆 = {[𝑠1, 𝑠2, … , 𝑠𝑛], 𝑠𝑖 = 𝑛𝑞, 0 ≤ 𝑠𝑖 ≤ 1, 𝑛 ∈ {0, … ,1} ⋅
100

𝑞
  } 

meaning that there are (𝑞 + 1)𝑛 different states. 

B. Action Space 

The actions available to each of the agents regard the 
decision of whether to accept or decline the allocation of the 
incoming connection. Assuming that 𝑚 different service classes 
are available to network users, a total of 2𝑚 actions are required 
to model all the possible different choices. Note that some 
actions might be unavailable since the APs could decide to 
accept only services of certain classes. 

The action set of user 𝑖 is then defined as: 

𝐴𝑖 = {[𝑎1, 𝑎2, … , 𝑎𝑚],   𝑎𝑗 ∈ {0,1}} 

C. Reward functions 

The reward that is given to each agent 𝑖  for successfully 
allocating a service of class 𝑗  depends on the service 
characteristics and on the amount of resources involved in the 
allocation. 

Assuming that the service requires 𝑡𝑗 resources, it is possible 

to model the reward as 

𝑟𝑖 = 𝛼𝑖𝑗𝑡𝑗

𝐵𝑖 + 𝑡𝑗

𝐶𝑖

, 

where 𝐵𝑖  and 𝐶𝑖 represent the amount of resources occupied on 

AP 𝑖 before the new allocation and the total capacity of the AP 

𝑖, respectively. The factor 𝛼𝑖𝑗 serves the purpose of prioritizing 

certain services over other ones and/or modelling the fact that 

some APs are more appropriate, in terms of Quality of Service, 

for certain services.  
The structure of the reward allows incentivizing the agent to 

allocate all of their resources, while also dedicating them to the 
most prioritized services. 

When a new service request arrives at the agents, each of 
them selects its action and consequently takes the decision of 
being available for the allocation or not. One agent is sampled 
randomly from the list of available ones, and the allocation 
procedure proceeds. The agents that offered their availability to 
allocate the incoming service but were not selected for the actual 
allocation receive a small negative reward to disincentivize the 
behaviour of always offering the allocation availability. 
Furthermore, an agent that offered the allocation but was not 
able to fulfil it due to a scarcity of resources is given a highly 
negative reward to penalize its behaviour and the connection is 
discarded. 

To avoid that all agents reject the less rewarding services, a 
negative reward is also given to all the agents if no agent offers 
its availability for the new allocation. 

D. 𝜀-Greedy Policy Selection 

A fundamental concept in RL is the trade-off between 
knowledge exploitation and environment exploration. The 
update of the 𝑄𝑖  tables (2) and the solution of the maximin 
problem (3) represent, respectively, the process of learning from 
experience, or knowledge acquiring, and its exploitation to 
derive a proper strategy for the player. To provide the players 
with an adequate degree of exploration, the action selection is 
subject to the following rule, known as 𝜀-gready selection: 

𝑎𝑖 = {
argmax𝑎𝑖

(𝑁𝑎𝑠ℎ𝑖), with probability 1 − 𝜀              

randomly chosen in the set 𝐴𝑖 , with probability 𝜀 
  () 

where 𝑁𝑎𝑠ℎ𝑖  is the operator described in (3), in the case in 
which all the Aps are assumed to compete one with each other 
and, hence, there is no friend player that cooperates with the 
agent 𝑖. As suggested in [13], a possible refinement to (4) is to 
consider a decreasing sequence of values for 𝜀, modelling the 
fact that the agent benefits more from the exploration process at 
the beginning, while knowledge exploitation becomes more 
effective as the agent experienced the system evolution and its 
possible states several times. 

E. Maximin Linear Programming Formulation 

In general, a maximin optimization problem takes the 
following form [14]: 

max min
𝑗=1,…,𝑛

 𝐽(𝑥𝑗) = 𝑐𝑗𝑥𝑗, 

           s. t.       𝐴𝑒𝑞𝑥 = 𝑔, 

                        𝐴𝑢𝑏𝑥 ≤ 𝑏, 

where 𝑐𝑗 ≥ 0  are scalars, 𝐴𝑒𝑞 , 𝐴𝑢𝑏  are matrices and 𝑔  and 𝑏 

vectors of appropriate dimensions. 

It is well known that such a formulation is equivalent to the 
following LP problem [14]: 

max
𝑧∈ℝ

 𝐽(𝑥𝑗) = 𝑐𝑗𝑥𝑗, 

𝑠. t.       𝐴𝑒𝑞𝑥 = 𝑔, 

            𝐴𝑢𝑏𝑥 ≤ 𝑏, 
                                 𝑧 ≤ 𝑐𝑗𝑥𝑗 , 𝑗 = 1, … , 𝑛, 

where 𝑧 is a scalar unknown that is bounded by the smallest 
value 𝑐𝑗𝑥𝑗 by means of the additional third constraint. 

In the context of Foe-Q-Learning, the maximin problem that 
appears in (3) becomes 

max
𝜋∈Π(𝐴1×… ×𝐴𝑘)

min
[𝑎𝑘,…,𝑎𝑁]∈(𝐴𝑘+1×… ×𝐴𝑁)

   

                            ∑ 𝜋(𝑎1) ⋯ 𝜋(𝑎𝑘)[𝑎1,…,𝑎𝑘]∈𝐴1×… ×𝐴𝑘
𝑄𝑖[𝑠, 𝑎1, … , 𝑎𝑁]  

 
𝑠. 𝑡.     𝜋(𝑎𝑖) ≥ 0 ∀ 𝑎𝑖 ∈ 𝐴𝑗 , 𝑗 = 1, . . , 𝑘                     

∑ 𝜋(𝑎𝑖) = 1𝑘
𝑖=1 ,                                       

leading to an equivalent LP formulation of the form: 



max
π∈Π(𝐴1×… ×𝐴𝑘)

𝑧 

s. t.   
ℎ𝑖 =  ∑ 𝜋(𝑎1) ⋯ 𝜋(𝑎𝑘)[𝑎1,…,𝑎𝑘]∈𝐴1×… ×𝐴𝑘

𝑄𝑖[𝑠, 𝑎1, … , 𝑎𝑁]  
                                        ∀ 𝑎𝑘 , … , 𝑎𝑁 ∈ (𝐴𝑘+1 × … × 𝐴𝑁) 

𝜋(𝑎𝑖) ≥ 0 ∀ 𝑎𝑖 ∈ 𝐴1, . . , 𝐴𝑘  
∑ 𝜋(𝑎𝑖) = 1𝑘

𝑖=1   
𝑧 ≤ ℎ𝑖  ∀ [𝑎𝑘 , … , 𝑎𝑁] ∈ (𝐴𝑘+1 × … × 𝐴𝑁).  

The following table reports the pseudo-code of the Network 

Selection Algorithm. 
Table 1 Algorithm Pseudo-Code 

Initialize 𝑄𝑖(𝑠, 𝑎), 𝑖 = 1, … , 𝑛, arbitrarly. 

For each connection request (episode) do: 

• Each player observes the state of the system and the 

class 𝑗 of the upcoming connection 

• Each player selects its action 𝑎𝑖 with an 𝜀-Greedy 

policy based on their 𝑁𝑎𝑠ℎ𝑖  function 

• The connection is allocated using the resources of 

one of the players that selected an action with 𝑎𝑗 =
1. If no player was available for the allocation one 

is selected randomly. 

• All players receive a reward 𝑟𝑖  as described in 

section III.C. 

• All players update their 𝑄𝑖  table according to eq. 

(2). 

end 

 

IV. SIMULATIONS 

A. Simulation setup 

 

Figure 1 Connection Area covered by 3 different Radio Access 

Technologies 

The scenario considered in the simulation is reported in 
Figure 1, and consists in an area covered by three different 
RATs. The number of agents considered is then 𝑁 = 3. The 
resource considered for the connection is throughput, and each 
RAT had a maximum capacity of 1000 Mbps. Two service 
classes were modelled, the first characterised by a resource 
request of 𝑡1 = 1 𝑀𝑏𝑝𝑠  and the latter by 𝑡2 = 5 𝑀𝑏𝑝𝑠 . The 
parbameters 𝛼𝑖𝑗 were set differently for each simulation. 

A total of 2000 user requests were generated, where each 
request had a 0.8 probability of being a new connection and 0.2 
of being the end of a connection, with a consequent resource 
deallocation. The connection requests were uniformly 
distributed over the two service classes. 

Regarding the RL-based controller parameters, 𝛼(𝑡) was set 
as 𝛼(𝑡) = 1/(1 + ⌊𝑡/10⌋),  where ⌊ ⌋  represents the lower-
integer operator, and 𝜀(𝑡) halved every 100 iterations starting 
from 𝜀(0) = 0.6. Finally, the discount factor 𝛾 was set to 0.9. 

The simulative scenario considered is a simplified one, but 
maintains the dimensioning and the key characteristics of the 
test cases that  are envisaged to be developed in the scope of the 
5G-ALLSTAR project. 

B. Simulation one – baseline Least Loaded Controller 

The baseline controller considered as a benchmark follows a 
least-loaded AP logic, as it assigns the upcoming connections to 
the APs with the lowest relative resource usage. Such a 
controller is centralised by nature, as it requires a complete 
knowledge of the state of the system. 

C. Simulation two – no service prioritisation 

In this simulation it was assumed 𝛼𝑖𝑗 = 1 ∀𝑖, 𝑗, meaning that 

the reward of the agents depends only on the amount of allocated 
resources and no priority was given to any of the two service 
classes.  

D. Simulation three – different rewards 

The controllers trained in this simulation received a reward 
for the allocations characterised by 𝛼𝑖,1 = 2 and 𝛼𝑖,2 = 0.2, ∀𝑖. 
This choice makes the per-bps reward higher for the first class 
of service. 

E. Simulation results 

From the analysis of Figure 2 and Figure 3, it is possible to 
note how the two RL agents behave differently from the 
centralised Least Loaded controller. In particular, the controller 
of simulation 2 tends to uniformly accept the two services, in 
line with the fact that they were characterised by the same 
amount of reward per-Mbps, while the second RL controller 
(simulation three) favours the allocation of services of the first 
class. Overall, both the Least Loaded controller and the 
controller of simulation 2 blocked a total of 409 Mbps, meaning 
that the first RL solution fully exploits its available resources. 
The second RL controller, on the contrary, allocates a slightly 
lower amount throughput, blocking a total of 463 Mbps. This 
different behaviour is due to the fact that the agents obtain, for 
the same amount of resources, a different pay-off depending on 
the service class. In fact, due to the choice of the parameters 𝛼𝑖𝑗, 

the services of the first class provide ten times the amount of 
reward per Mbps with respect to the other. Even if the second 
RL controller blocked more Mbps, this translated in an 
improvement in performances, measured in terms of its 
cumulative total reward, of approximately 10%. 



 

Figure 2 Number of allocated connections for the three controllers, 

divided by service class 

 
Figure 3 Number of blocked connection for the three controllers, 

divided by service class 

 

Figure 4 Total amount of bitrate of the blocked connections 

 

V. CONCLUSIONS AND FUTURE WORKS 

The paper presented a distributed control approach for the 

problem of network selection. The proposed solution was based 

on Friend-or-Foe Q-learning, a multi-agent distributed 

Reinforcement Learning approach to solve Markov Games. The 

problem was modeled as a standard multi-agent Markov 

Decision Problem, and an adversarial game was formulated. 

The preliminary simulations presented validated the concept of 

the approach, while future testing on more realistic scenarios 

will be carried out within the scope of the H2020 5G-

ALLSTAR project. 
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