Boundary observer design for a system of ODEs in cascade with hyperbolic PDEs is studied. An infinite dimensional observer is used to solve the state estimation problem. The interconnection of the observer and the system is written in estimation error coordinates and analyzed as an abstract dynamical system. The design of the observer is performed to achieve global exponential stability of the estimation error with respect to a suitable norm and with a tunable convergence rate. Sufficient conditions in the form matrix inequalities are given for the design of the observer. The effectiveness of the approach is shown in a numerical example.

Boundary observer design for cascaded ODE — Hyperbolic PDE systems: A matrix inequalities approach / Ferrante, F.; Cristofaro, A.; Prieur, C.. - In: AUTOMATICA. - ISSN 0005-1098. - 119:(2020). [10.1016/j.automatica.2020.109027]

Boundary observer design for cascaded ODE — Hyperbolic PDE systems: A matrix inequalities approach

Cristofaro A.
Membro del Collaboration Group
;
2020

Abstract

Boundary observer design for a system of ODEs in cascade with hyperbolic PDEs is studied. An infinite dimensional observer is used to solve the state estimation problem. The interconnection of the observer and the system is written in estimation error coordinates and analyzed as an abstract dynamical system. The design of the observer is performed to achieve global exponential stability of the estimation error with respect to a suitable norm and with a tunable convergence rate. Sufficient conditions in the form matrix inequalities are given for the design of the observer. The effectiveness of the approach is shown in a numerical example.
2020
Computer-aided design; Convex optimization; Distributed-parameter systems; Lyapunov methods; Observers
01 Pubblicazione su rivista::01a Articolo in rivista
Boundary observer design for cascaded ODE — Hyperbolic PDE systems: A matrix inequalities approach / Ferrante, F.; Cristofaro, A.; Prieur, C.. - In: AUTOMATICA. - ISSN 0005-1098. - 119:(2020). [10.1016/j.automatica.2020.109027]
File allegati a questo prodotto
File Dimensione Formato  
Ferrante_Boundary_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 857.23 kB
Formato Adobe PDF
857.23 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1422495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact