Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work [Phys. Rev. D 99, 104077 (2019)PRVDAQ2470-001010.1103/PhysRevD.99.104077] we studied the quasinormal mode spectrum of spacetimes for which the radial potentials are slightly modified from their general relativistic form, writing generic small modifications as a power-series expansion in the radial coordinate. We assumed that the perturbations in the quasinormal frequencies are linear in some perturbative parameter, and that there is no coupling between the perturbation equations. In general, matter fields and modifications to the gravitational field equations lead to coupled wave equations. Here we extend our previous analysis in two important ways: we study second-order corrections in the perturbative parameter, and we address the more complex (and realistic) case of coupled wave equations. We highlight the special nature of coupling-induced corrections when two of the wave equations have degenerate spectra, and we provide a ready-to-use recipe to compute quasinormal modes. We illustrate the power of our parametrization by applying it to various examples, including dynamical Chern-Simons gravity, Horndeski gravity and an effective field theory-inspired model.

Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes / McManus, R.; Berti, E.; Macedo, C. F. B.; Kimura, M.; Maselli, A.; Cardoso, V.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:4(2019). [10.1103/PhysRevD.100.044061]

Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes

Maselli A.;
2019

Abstract

Linear perturbations of spherically symmetric spacetimes in general relativity are described by radial wave equations, with potentials that depend on the spin of the perturbing field. In previous work [Phys. Rev. D 99, 104077 (2019)PRVDAQ2470-001010.1103/PhysRevD.99.104077] we studied the quasinormal mode spectrum of spacetimes for which the radial potentials are slightly modified from their general relativistic form, writing generic small modifications as a power-series expansion in the radial coordinate. We assumed that the perturbations in the quasinormal frequencies are linear in some perturbative parameter, and that there is no coupling between the perturbation equations. In general, matter fields and modifications to the gravitational field equations lead to coupled wave equations. Here we extend our previous analysis in two important ways: we study second-order corrections in the perturbative parameter, and we address the more complex (and realistic) case of coupled wave equations. We highlight the special nature of coupling-induced corrections when two of the wave equations have degenerate spectra, and we provide a ready-to-use recipe to compute quasinormal modes. We illustrate the power of our parametrization by applying it to various examples, including dynamical Chern-Simons gravity, Horndeski gravity and an effective field theory-inspired model.
2019
Gravitational waves; black holes; strong gravity
01 Pubblicazione su rivista::01a Articolo in rivista
Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes / McManus, R.; Berti, E.; Macedo, C. F. B.; Kimura, M.; Maselli, A.; Cardoso, V.. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 100:4(2019). [10.1103/PhysRevD.100.044061]
File allegati a questo prodotto
File Dimensione Formato  
Maselli_Parametrized-black-hole.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 649.75 kB
Formato Adobe PDF
649.75 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1405675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 57
social impact