From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S = 0) and dark triplet quintet (S = 1, 2) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems.

Site-selective measurement of coupled spin pairs in an organic semiconductor / Bayliss, Sl; Weiss, Lr; Mitioglu, A; Galkowski, K; Yang, Z; Yunusova, K; Surrente, A; Thorley, Kj; Behrends, J; Bittl, R; Anthony, Je; Rao, A; Friend, Rh; Plochocka, P; Christianen, Pcm; Greenham, Nc; Chepelianskii, Ad. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 115:20(2018), pp. 5077-5082. [10.1073/pnas.1718868115]

Site-selective measurement of coupled spin pairs in an organic semiconductor

Surrente A;
2018

Abstract

From organic electronics to biological systems, understanding the role of intermolecular interactions between spin pairs is a key challenge. Here we show how such pairs can be selectively addressed with combined spin and optical sensitivity. We demonstrate this for bound pairs of spin-triplet excitations formed by singlet fission, with direct applicability across a wide range of synthetic and biological systems. We show that the site sensitivity of exchange coupling allows distinct triplet pairs to be resonantly addressed at different magnetic fields, tuning them between optically bright singlet (S = 0) and dark triplet quintet (S = 1, 2) configurations: This induces narrow holes in a broad optical emission spectrum, uncovering exchange-specific luminescence. Using fields up to 60 T, we identify three distinct triplet-pair sites, with exchange couplings varying over an order of magnitude (0.3-5 meV), each with its own luminescence spectrum, coexisting in a single material. Our results reveal how site selectivity can be achieved for organic spin pairs in a broad range of systems.
2018
Coupled spin pairs; physics; biological systems
01 Pubblicazione su rivista::01a Articolo in rivista
Site-selective measurement of coupled spin pairs in an organic semiconductor / Bayliss, Sl; Weiss, Lr; Mitioglu, A; Galkowski, K; Yang, Z; Yunusova, K; Surrente, A; Thorley, Kj; Behrends, J; Bittl, R; Anthony, Je; Rao, A; Friend, Rh; Plochocka, P; Christianen, Pcm; Greenham, Nc; Chepelianskii, Ad. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 0027-8424. - 115:20(2018), pp. 5077-5082. [10.1073/pnas.1718868115]
File allegati a questo prodotto
File Dimensione Formato  
Surrente_Coupled-spin-pairs.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1397863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact