We study here the random fluctuations in the number of critical points with values in an interval I⊂R for Gaussian spherical eigenfunctions fℓ, in the high energy regime where ℓ→∞. We show that these fluctuations are asymptotically equivalent to the centred L2-norm of fℓ times the integral of a (simple and fully explicit) function over the interval under consideration. We discuss also the relationships between these results and the asymptotic behaviour of other geometric functionals on the excursion sets of random spherical harmonics.

A reduction principle for the critical values of random spherical harmonics / Cammarota, V.; Marinucci, D.. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 130:4(2020), pp. 2433-2470. [10.1016/j.spa.2019.07.006]

A reduction principle for the critical values of random spherical harmonics

Cammarota V.;Marinucci D.
2020

Abstract

We study here the random fluctuations in the number of critical points with values in an interval I⊂R for Gaussian spherical eigenfunctions fℓ, in the high energy regime where ℓ→∞. We show that these fluctuations are asymptotically equivalent to the centred L2-norm of fℓ times the integral of a (simple and fully explicit) function over the interval under consideration. We discuss also the relationships between these results and the asymptotic behaviour of other geometric functionals on the excursion sets of random spherical harmonics.
2020
Berry's cancellation phenomenon; critical points; quantitative central limit theorem; reduction principle; spherical harmonics; Wiener-Chaos expansion
01 Pubblicazione su rivista::01a Articolo in rivista
A reduction principle for the critical values of random spherical harmonics / Cammarota, V.; Marinucci, D.. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 130:4(2020), pp. 2433-2470. [10.1016/j.spa.2019.07.006]
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_reduction-principle_2020.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 452.17 kB
Formato Adobe PDF
452.17 kB Adobe PDF
Cammarota_reduction-principle_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 452.87 kB
Formato Adobe PDF
452.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1394023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact