We study here the random fluctuations in the number of critical points with values in an interval I⊂R for Gaussian spherical eigenfunctions fℓ, in the high energy regime where ℓ→∞. We show that these fluctuations are asymptotically equivalent to the centred L2-norm of fℓ times the integral of a (simple and fully explicit) function over the interval under consideration. We discuss also the relationships between these results and the asymptotic behaviour of other geometric functionals on the excursion sets of random spherical harmonics.
A reduction principle for the critical values of random spherical harmonics / Cammarota, V.; Marinucci, D.. - In: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. - ISSN 0304-4149. - 130:4(2020), pp. 2433-2470. [10.1016/j.spa.2019.07.006]
A reduction principle for the critical values of random spherical harmonics
Cammarota V.;Marinucci D.
2020
Abstract
We study here the random fluctuations in the number of critical points with values in an interval I⊂R for Gaussian spherical eigenfunctions fℓ, in the high energy regime where ℓ→∞. We show that these fluctuations are asymptotically equivalent to the centred L2-norm of fℓ times the integral of a (simple and fully explicit) function over the interval under consideration. We discuss also the relationships between these results and the asymptotic behaviour of other geometric functionals on the excursion sets of random spherical harmonics.File | Dimensione | Formato | |
---|---|---|---|
Cammarota_reduction-principle_2020.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
452.17 kB
Formato
Adobe PDF
|
452.17 kB | Adobe PDF | |
Cammarota_reduction-principle_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
452.87 kB
Formato
Adobe PDF
|
452.87 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.