We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.
Signed radon measure-valued solutions of flux saturated scalar conservation laws / Bertsch, M.; Smarrazzo, F.; Terracina, A.; Tesei, A.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 40:6(2020), pp. 3143-3169. [10.3934/dcds.2020041]
Signed radon measure-valued solutions of flux saturated scalar conservation laws
Terracina A.;Tesei A.
2020
Abstract
We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.File | Dimensione | Formato | |
---|---|---|---|
Bertsch_Signed-radon_2020.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
445 kB
Formato
Adobe PDF
|
445 kB | Adobe PDF | Contatta l'autore |
Bertsch_preprint_Signed-radon_2020.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
361.49 kB
Formato
Adobe PDF
|
361.49 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.