We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.

Signed radon measure-valued solutions of flux saturated scalar conservation laws / Bertsch, M.; Smarrazzo, F.; Terracina, A.; Tesei, A.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 40:6(2020), pp. 3143-3169. [10.3934/dcds.2020041]

Signed radon measure-valued solutions of flux saturated scalar conservation laws

Terracina A.;Tesei A.
2020

Abstract

We prove existence and uniqueness for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous and bounded. The solution class is determined by an additional condition which is needed to prove uniqueness.
2020
Entropy inequalities; first order hyperbolic conservation law; signed radon measures; singular boundary conditions; uniqueness
01 Pubblicazione su rivista::01a Articolo in rivista
Signed radon measure-valued solutions of flux saturated scalar conservation laws / Bertsch, M.; Smarrazzo, F.; Terracina, A.; Tesei, A.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. - ISSN 1078-0947. - 40:6(2020), pp. 3143-3169. [10.3934/dcds.2020041]
File allegati a questo prodotto
File Dimensione Formato  
Bertsch_Signed-radon_2020.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 445 kB
Formato Adobe PDF
445 kB Adobe PDF   Contatta l'autore
Bertsch_preprint_Signed-radon_2020.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.49 kB
Formato Adobe PDF
361.49 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1392626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact