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SIGNED RADON MEASURE-VALUED SOLUTIONS

OF FLUX SATURATED SCALAR CONSERVATION LAWS

MICHIEL BERTSCH, FLAVIA SMARRAZZO, ANDREA TERRACINA,
AND ALBERTO TESEI

Abstract. We prove existence and uniqueness for a class of signed Radon
measure-valued entropy solutions of the Cauchy problem for a first order scalar
hyperbolic conservation law in one space dimension. The initial data of the
problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz

continuous and bounded. The solution class is determined by an additional
condition which is needed to prove uniqueness.

1. Introduction

We study the Cauchy problem for the scalar conservation law:

(CL) { ut + [H(u)]x = 0 in R × (0, T ) =∶ S
u = u0 in R × {0} ,

where

(A0) H ∈W 1,∞(R) , H(0) = 0
(obviously the condition H(0) = 0 is not restrictive). The initial condition u0 is a
signed Radon measure on R. In most of the paper we shall assume that its singular
part, u0s, is a finite superposition of Dirac masses:

(A1) u0s =
p

∑
j=1

cjδxj
(x1 < x2 < ⋅ ⋅ ⋅ < xp; cj ∈ R ∖ {0} for 1 ≤ j ≤ p) .

In that case we denote the support of the singular measure u0s by F :

F = {x1, x2,⋯, xp}.
In [3] we considered the case of nonnegative initial measures u0. In the present

paper we consider the case of signed measures (see [2, 5, 7, 9] for motivations and
related remarks). A specific motivation is the link between measure-valued solutions
of (CL) and discontinuous solutions of the Cauchy problem for the Hamilton-Jacobi
equation

(HJ) { Ut +H(Ux) = 0 in S

U = U0 in R × {0} ,
where U0 ∈ BVloc(R) ∩ L∞(R), U ′0 ∈ L1

loc(R ∖ F ), and U0(x+j ) ≠ U0(x−j ) if xj ∈ F .

If (A1) is satisfied, the distributional derivative U ′0 is a Radon measure without
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singular continuous part, U ′0 =
p

∑
j=1

[U0(x+j ) −U0(x−j )] δxj
+ (U ′0)ac, and problems

(CL), (HJ) are formally related by the equality u = Ux. In a forthcoming paper
[4], problem (HJ) will be studied in the context of viscosity solutions.

It is known ([2]) that (i) the singular part us of a suitably defined entropy solution
may persist for some positive time (see [2, Theorem 3.5]) and (ii) entropy solutions
are not always uniquely determined by the initial condition u0 (see also Remark
3.2). To overcome the latter problem, we introduced in [3] a so-called compatibility
condition at those points where us(⋅, t) is a Dirac mass, and used it as a uniqueness
criterion for nonnegative measure-valued solutions.

The starting point of the present paper is the statement that, for general signed
initial measures u0, the singular part us of any local entropy solution u of (CL) (in
the sense of Definition 3.2) satisfies a monotonicity result: both the positive and
negative part of us, [u(⋅, t)]±s , are nonincreasing with respect to t (see Theorem 3.1).
For the class of initial measures satisfying (A1) this implies that the support of the
singular part us of an entropy solution of problem (CL) is a subset of F × [0, T ]
and, in addition, that the sign of [u(⋅, t)]s is determined by that of u0s. Having this
in mind it is rather straightforward to adapt the concept of compatibility condition
in [3] to signed measure-valued solutions (see Definition 3.3).

The main result of the paper is that if (A0) and (A1) are satisfied, then (CL) is
well-posed in the class of entropy solutions which satisfy the compatibility condition
at the p points xj ∈ F .

Existence of a solution is proven by a constructive approach which can be outlined
as follows. By (A0)-(A1) there exists a positive time τ until which all singularities
persist (see [2, Theorem 3.5]), thus the real line is the disjoint union of p+1 intervals.
In each interval we solve the initial-boundary value problem for the conservation
law in (CL), the initial data being the restriction of u0r to that interval, with
“boundary conditions equal to infinity”. Namely, we consider the singular Dirichlet
initial-boundary value problems

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in (xj−1, xj) × (0, T )
u = ±∞ in {xj−1} × (0, T )
u = ±∞ in {xj} × (0, T )
u = u0r in (xj−1, xj) × {0}

with j = 2, . . . , p, and

(1.2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + [H(u)]x = 0 in (−∞, x1) × (0, T )
u = ±∞ in {x1} × (0, T )
u = u0r in (−∞, x1) × {0} ,

(1.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + [H(u)]x = 0 in (xp,∞) × (0, T )
u = ±∞ in {xp} × (0, T )
u = u0r in (xp,∞) × {0} .

The choice between u = ∞ and u = −∞ at xj is determined by the sign of cj : we
choose∞ if cj > 0 and −∞ if cj < 0. Existence and uniqueness of an entropy solution
to each problem (1.1)-(1.3) is proven in Sections 5-6. In particular, existence follows
from an approximation procedure which makes use of BV initial and boundary data,
avoiding the L∞-theory of initial-boundary value problems developed in [11] (see
Section 6).
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The function determined by solutions of (1.1)-(1.3) in R× (0, τ) is, by definition,
the regular part of a Radon measure, whose singular part is defined by observing
that the variation of mass at each point xj depends on the sweeping effect of the
flux across xj (see (7.2), (7.4), (7.6b) and Proposition 5.3). Then it is proven that
this measure is the unique entropy solution of (CL) (in the sense of Definition 3.2)
which satisfies the compatibility conditions at all xj ∈ F until the time t = τ . Here
we use that the required compatibility condition for the solution of the Cauchy
problem (CL) at xj is exactly the entropic formulation of the boundary conditions
”u = ±∞” for the singular Dirichlet problems (see also Remark 5.3). If τ < T

we iterate the procedure in R × (τ, T ) with a smaller number a singularities, thus
well-posedness of (CL) follows in a finite number of steps (see Section 7). We
observe that the proof of uniqueness of entropy solutions to problem (CL) relies on
a general comparison principle between entropy sub and super-solutions of (1.1)–
(1.3) (see Definitions 5.2–5.5 and Theorem 5.2 below) which is independent of the
above construction procedure. In this sense the comparison results are stronger
than those in [3, Theorem 3.2].

The results in the paper can be esaily extended to the case that u0s is a locally
finite superposition of Dirac masses (namely, if the number of Dirac masses in every
bounded interval is finite).

2. Preliminaries

Let χE denote the characteristic function of E ⊆ R. For every u ∈ R we set

[u]± ∶=max{±u,0}, sgn
±
(u) ∶= ±χR±

(u), sgn(u) ∶= sgn
−
(u) + sgn

+
(u) .

For every real function f on R and x0 ∈ R we say that

ess lim
x→x±

0

f(x) = l ∈ R ,

if there is a null set E∗ ⊆ R such that f(xn) → l if {xn} ⊆ R ∖(E∗∪{x0}), xn → x±0 .
For every open subset Ω ⊆ R we denote by Cc(Ω) the space of continuous real

functions with compact support in Ω and by M+(Ω) the cone of the nonnegative
Radon measures on Ω. According to [6, Section 1.3], we say that ν is a (signed)
Radon measure on Ω if there exist a (nonnegative) Radon measure µ ∈M+(Ω) and
a locally µ-summable function f ∶ Ω→ [−∞,∞] such that

ν(K) = ∫
K
f dµ

for all compact sets K ⊂ Ω. The space of (signed) Radon measures on Ω will be
denoted byM(Ω).

If µ, ν ∈M(Ω), we say that µ ≤ ν inM(Ω) if ν−µ ∈M+(Ω). We denote by ⟨⋅, ⋅⟩Ω
the duality map between M(Ω) and Cc(Ω). A sequence {µn} of Radon measures

on R converges weakly* to a Radon measure µ, µn
∗

⇀ µ, if ⟨µn, ρ⟩R → ⟨µ, ρ⟩R for all
ρ ∈ Cc(R). For any compact K ∈ R the spaceM(K) is a Banach space with norm∥µ∥M(K) ∶= ∣µ∣(K), where ∣µ∣ denotes the total variation of µ. A sequence {µn}
converges strongly to µ inM(K) if ∥µn−µ∥M(K) → 0 as n→∞. Similar definitions
are used for Radon measures on any subset of S ∶= R × (0, T ).

Every µ ∈M(R) has a unique decomposition µ = µac + µs, with µac ∈M(R) ab-
solutely continuous and µs ∈ M(R) singular with respect to the Lebesgue measure.
We denote by µr ∈ L1

loc(R) the density of µac. Every function f ∈ L1
loc(R) can be
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identified to an absolutely continuous Radon measure on R; we shall denote this
measure by the same symbol f used for the function.

The restriction µ ⌞E of µ ∈M(R) to a Borel set E ⊆ R is defined by (µ ⌞E)(A) ∶=
µ(E ∩A) for any Borel set A ⊆ R. Similar notations are used forM(S).

For every open subset Ω ⊆ R we denote by BV (Ω) the Banach space of functions
of bounded variation in Ω:

BV (Ω) ∶= {z ∈ L1(Ω) ∣z′ ∈M(Ω), ∥z′∥M(Ω) <∞} , ∥z∥BV (Ω) ∶= ∥z∥L1(Ω)+∥z′∥M(Ω) ,
where z′ is the first order distributional derivative. The total variation in Ω of z
is TV (z;Ω) ∶= ∥z′∥M(Ω). We say that z ∈ BVloc(R) if z ∈ BV (Ω) for every open
subset Ω ⊂⊂ R.

In the remainder of this section Ω denotes an open subset of R, and QT = Ω ×(0, T ). By C([0, T ];M(Ω)) we denote the subset of strongly continuous mappings
from [0, T ] into M(Ω) - namely, u ∈ C([0, T ];M(Ω)) if for all t0 ∈ [0, T ] and for
every compact K ∈ Ω there holds ∥u(⋅, t) − u(⋅, t0)∥M(K) → 0 as t→ t0.

Definition 2.1. We denote by L∞(0, T ;M+(Ω)) the set of nonnegative Radon
measures u ∈M+(QT ) such that for a.e. t ∈ (0, T ) there is a measure u(⋅, t) ∈M+(Ω)
with the following properties:(i) if ζ ∈ C([0, T ];Cc(Ω)) the map t↦ ⟨u(⋅, t), ζ(⋅, t)⟩Ω belongs to L1(0, T ) and
(2.1) ⟨u, ζ⟩QT

= ∫
T

0
⟨u(⋅, t), ζ(⋅, t)⟩Ω dt ;

(ii) the map t↦ ∥u(⋅, t)∥M(K) belongs to L∞(0, T ) for every compact K ⊂ Ω.
Remark 2.1. Definition 2.1 implies that for all ρ ∈ Cc(Ω) the map t ↦ ⟨u(⋅, t), ρ⟩Ω is
measurable, thus the map u ∶ (0, T )→M+(Ω) is weakly* measurable. For simplicity
we prefer the notation L∞(0, T ;M+(Ω)) to the more correct one L∞w∗(0, T ;M+(Ω)).
Moreover, as a consequence of Definition 2.1-(i), it can be seen that for every Borel
set E ⊆ QT the map t→ u(⋅, t)(Et) is Lebesgue measurable and there holds

(2.2) u(E) = ∫ T

0
u(⋅, t)(Et)dt (Et = {x ∈ Ω ∶ (x, t) ∈ E}).

If u ∈ L∞(0, T ;M+(Ω)), then uac, us ∈ L∞(0, T ;M+(Ω)) as well, and ur ∈
L∞(0, T ;L1

loc(Ω)). Moreover, equality (2.1) implies

⟨uac, ζ⟩QT
= ∫∫QT

ur ζ dxdt and ⟨us, ζ⟩QT
= ∫ T

0 ⟨us(⋅, t), ζ(⋅, t)⟩Ω dt.

Denoting by [u(⋅, t)]ac, [u(⋅, t)]s ∈M+(Ω) the absolutely continuous and the singu-
lar part of the measure u(⋅, t) ∈ M+(Ω), a routine proof shows that for a.e. t ∈ (0, T )
(2.3) us(⋅, t) = [u(⋅, t)]s , uac(⋅, t) = [u(⋅, t)]ac , ur(⋅, t) = [u(⋅, t)]r ,
where [u(⋅, t)]r denotes the density of the measure [u(⋅, t)]ac. In view of (2.3), we
shall always identify the quantities which appear on either side of equalities (2.3).

We say that a (signed) Radon measure u ∈ M(QT ) belongs to L∞(0, T ;M(Ω))
if both u+ and u− belong to L∞(0, T ;M+(Ω)). In particular, this implies that:

(α) the total variation ∣u∣ of the measure u belongs to L∞(0, T ;M+(Ω));(β) conditions (i) and (ii) of Definition 2.1 hold with u(⋅, t) ∶= u+(⋅, t) − u−(⋅, t) for
a.e. t ∈ (0, T ).



SIGNED RADON MEASURE-VALUED SOLUTIONS 5

Moreover, since u+ and u− are mutually singular, it follows that for a.e. t the
nonnegative measures u+(⋅, t) and u−(⋅, t) are mutually singular, whence

(2.4) u±(⋅, t) = [u(⋅, t)]± , ∣u(⋅, t)∣ = ∣u∣(⋅, t) for a.e. t ∈ (0, T ) ,
and

(2.5) u±s(⋅, t) = [u(⋅, t)]±s , ∣us∣(⋅, t) = ∣[u(⋅, t)]s∣ for a.e. t ∈ (0, T ) .
3. Results

For any τ ∈ (0, T ] and open subset Ω ⊆ R set Qτ ∶= Ω × (0, τ], QT ≡ Q; set also
Sτ ∶= R × (0, τ], ST ≡ S. Solutions of problem (CL) are meant in the following
sense.

Definition 3.1. Let u0 be a signed Radon measure on Ω and let (A0) be satisfied.
A measure u ∈ L∞(0, T ;M(Ω)) is a solution of problem (CL) in Qτ if for all
ζ ∈ C1([0, τ];C1

c (Ω)), ζ(⋅, τ) = 0 in Ω there holds

(3.1) ∬
Qτ

[urζt +H(ur) ζx]dxdt +∫ τ

0
⟨us(⋅, t), ζt(⋅, t)⟩Ω dt = − ⟨u0, ζ(⋅,0)⟩Ω .

Solutions of (CL) in S are simply referred to as “solutions of (CL)”.
Definition 3.2. Let u0 be a signed Radon measure on Ω and let (A0) be satisfied.
A solution of (CL) in Qτ is called an entropy solution in Qτ if it satisfies the entropy
inequality

∬
Qτ

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt +(3.2)

+∫
τ

0
⟨∣us(⋅, t)∣, ζt(⋅, t)⟩Ω dt ≥ −∫

Ω
∣u0r(x) − k∣ ζ(x,0)dx − ⟨∣u0s∣, ζ(⋅,0)⟩Ω

for all ζ ∈ C1([0, τ];C1
c (Ω)), ζ ≥ 0, ζ(⋅, τ) = 0 in Ω, and for all k ∈ R;

If Qτ ≠ QT , an (entropy) solution in Qτ can be considered as a local (entropy)
solution of (CL). For general initial measures, local entropy solutions satisfy the
following monotonicity result.

Theorem 3.1. Let (A0) be satisfied, let u0 be a signed Radon measure on Ω and let
u be an entropy solution u of problem (CL) in QT . Then, for a.e. 0 < t1 < t2 < T ,
there holds

(3.3) [u(⋅, t2)]±s ≤ [u(⋅, t1)]±s ≤ u±0s in M(Ω) .
Now we consider the case that u0s is the sum of a finite number of Dirac masses

with support F .

Remark 3.1. Let (A0) − (A1) be satisfied and let u be an entropy solution of
problem (CL) in QT . Arguing as in the proof of Proposition 3.20 in [2], it follows
that u ∈ C((0, T ];M(Ω)).
Corollary 3.2. Let (A0) − (A1) be satisfied and let u be an entropy solution u of
problem (CL) in QT . Then us ∈ C([0, T ];M(Ω)), [u(⋅,0)]s = u0s, (3.3) holds for
any 0 ≤ t1 ≤ t2 ≤ T and for every xj ∈ F ∩Ω there exists tj ∈ (0, T ] such that

(3.4)

⎧⎪⎪⎨⎪⎪⎩
us(⋅, t)({xj}) ≠ 0 if t ∈ [0, tj),
us(⋅, t)({xj}) = 0 if t ∈ (tj , T ].
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We observe that the proof of Corollary 3.2 provides an explicit lower bound for tj.

If xj ∈ F and tj ∈ (0, T ] as in Corollary 3.2, Theorem 3.1 implies that the support
of the singular part of any entropy solution is a subset of F × [0, T ] and that the
Delta mass at xj ∈ F does not change sign in the interval [0, tj). Therefore we may
formulate a compatibility condition at xj which depends on the sign of cj , i.e. on
the sign of the initial Delta mass at xj :

Definition 3.3. Let (A0) − (A1) be satisfied. An entropy solution u of (CL) in
QT is said to satisfy the compatibility condition at xj ∈ F ∩Ω if

(3.5a) ess lim
x→x+

j

∫
tj

0
sgn

±
(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≤ 0 if ± cj < 0,

(3.5b) ess lim
x→x−

j

∫
tj

0
sgn

±
(ur(x, t) − k) [H(ur(x, t)) −H(k)]β(t)dt ≥ 0 if ± cj < 0

for all β ∈ C1
c (0, tj), β ≥ 0 and k ∈ R, where tj ∈ (0, T ] is defined by Corollary 3.2.

We shall prove below (see Remark 5.4) that, if (A0)-(A1) hold, for every entropy
solution u of (CL) the limits

(3.6) ess lim
x→x±

j

∫
T

0
sgn

±
(ur(x, t)−k)[H(ur(x, t))−H(k)]β(t)dt (j = 1, . . . , p) ,

with β and k as above, exist and are finite. Hence Definition 3.3 is well-posed.

The main result of the paper is the well-posedness of problem (CL), if u0 sat-
isfies (A1), in the class of entropy solutions in C([0, T ];M(R)) which satisfy the
compatibility condition in suppu0.

Theorem 3.3. Let (A0)-(A1) be satisfied. Then there exists a unique entropy
solution of problem (CL) which belongs to C([0, T ];M(R)) and satisfies the com-
patibility condition at all xj ∈ suppu0.

Remark 3.2. It was already observed in [2] that in general measure-valued en-
tropy solutions are not unique. This is essentially a consequence of the elementary
observation that there exists a unique entropy solution for which [us(t)] = u0s for
a.e. t ∈ (0, T ) (it is enough to set u = u0 + ũ, where ũ is the entropy solution with
initial data u0r). But if u0 satisfies (A1) and F ≠ ∅, one easily checks that if the
function H , satisfying (A0), is not constant in intervals of the type (a,∞) and(−∞, b), then such solution does not satisfy the compatibility condition at xj ∈ F .
In particular, it does not coincide with the solution defined by Theorem 3.3.

4. Monotonicity of us.

In this section we prove Theorem 3.1 and Corollary 3.2.

Proof of Theorem 3.1. By (3.1), for every k ∈ R we get

∬
S
(ur − k)β′(t)ρ(x)dxdt +∫ T

0
⟨us(⋅, t), ρ⟩R β′(t)dt +

+∬
S
[H(ur) −H(k)] ρ′(x)β(t)dxdt =

= −β(0){∫
R

(u0r − k)ρ(x)dx + ⟨u0s , ρ⟩R}



SIGNED RADON MEASURE-VALUED SOLUTIONS 7

for all ρ ∈ C1
c (Ω) and β ∈ C1

c ([0, T )). By summing and subtracting the above
equality from the entropy inequality (3.2), for every nonnegative ρ and β as above
we obtain

∬
S
[ur − k]± β′(t)ρ(x)dxdt +∫ T

0
⟨[u(⋅, t)]±s , ρ⟩R β′(t)dt +

+∬
S
sgn

±
(ur − k) [H(ur) −H(k)] ρ′(x)β(t)dxdt ≥

≥ −β(0){∫
R

[u0r − k]± ρ(x)dx + ⟨u±0s , ρ⟩R} ,
Letting k →∞ with ”+” and k → −∞ with ”-”, we obtain that

∫
T

0
⟨[u(⋅, t)]±s , ρ⟩R β′(t)dt ≥ ⟨u±0s , ρ⟩R .

Let 0 < t1 < t2 ≤ T . By standard approximation arguments we can choose

β(t) = βn(t) = n(t − t1)χ[t1,t1+1/n](t) + χ(t1+1/n,t2−1/n)(t) + n(t2 − t)χ[t2−1/n,t2] .
Arguing as in the proof of Proposition 3.8(i) in [2], there exists a null set N ∈ (0, T )
which does not depend on the function ρ such that, letting n →∞,

(4.7) ⟨[u(⋅, t2)]±s , ρ⟩R ≤ ⟨[u(⋅, t1)]±s , ρ⟩R if t1, t2 /∈ N .

Hence the first inequality in (3.3) follows from the arbitrariness of ρ.
The second inequality in (3.3) can be proved in a similar way, replacing βn by

βn(t) = χ(0,t1−1/n)(t) + n(t1 − t)χ[t1−1/n,t1] .
◻

Proof of Corollary 3.2. Arguing as in the proof of Theorem 3.1, for every ρ ∈ C1
c (Ω)

and t ∈ (0, T ] from (3.1) we get

⟨u(⋅, t) , ρ⟩
R
− ⟨u0 , ρ⟩R = ∫ t

0
∫
R

H(ur)ρ′(x)dxds .(4.8)

Fix any xj ∈ F ∩Ω. By standard approximation arguments we can choose in (4.8)

ρ(x) = ρn(x) = n(x − xj + 1/n)χ[xj−1/n,xj] + n(xj + 1/n − x)χ(xj,xj+1/n] .

Then letting n →∞, and observing that

∣∫ t

0
∫
R

H(ur)ρ′n(x)dxds∣ ≤ ∥H∥∞t∫
R

∣ρ′n(x)∣dx ≤ 2 ∥H∥∞t ,
we obtain

(4.9) ∣us(⋅, t) ({xj}) − u0s ({xj})∣ ≤ 2 ∥H∥∞t .
Since, by Theorem 3.1, us(⋅, t) = us(⋅, t)⌞F and F contains p points, we obtain that∥us(⋅, t) − u0s∥ ≤ 2p∥H∥∞t. Hence us ∈ C([0, T ];M(Ω)) and [u(⋅,0)]s = u0s (see
also Remark 3.1).

If u0s ⌞ {xj} = ±u±0s ⌞ {xj}, it follows from (3.3) that [u(⋅, t)]∓s ⌞ {xj} = 0 for any
t ∈ [0, T ]. Then inequality (4.9) gives

[us(⋅, t)]± ({xj}) ≥ u±0s ({xj}) − 2t∥H∥∞ > 0
for any t ∈ [0, tj), with tj ∶= u±

0s({xj})
2∥H∥∞ . Then by the monotonicity of the mappings

t↦ u±s(⋅, t) (see (3.3)) the conclusion follows. ◻
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5. Problem (D): comparison and uniqueness

As already said, to address (CL) we need results concerning singular Dirichlet
initial-boundary value problems for the scalar conservation law:

(D)
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut + [H(u)]x = 0 in Ω × (0, T ) =∶ Q
u =m1 in {a} × (0, T )
u =m2 in {b} × (0, T )
u = u0 in Ω × {0} ,

where Ω = (a, b) is a bounded interval, m1 = ±∞, m2 = ±∞, and u0 ∶ Ω↦ R. Similar
problems will be considered also for half-lines, either Ω ≡ (a,∞), or Ω ≡ (−∞, b);
obviously, the above condition at {b}× (0, T ) is omitted when Ω ≡ (a,∞), and that
at {a} × (0, T ) is omitted when Ω ≡ (−∞, b).

We shall denote problem (D) by (DS) when m1 = ±∞, m2 = ±∞, or by (DR)
when both m1 and m2 are finite. When Ω = (a, b) problem (DS) stands for four
different initial-boundary value problems, which we denote by (D+

+
), (D−

−
), (D−

+
)

and (D+
−
) according to the four choices m1 =m2 =∞, m1 =m2 = −∞, m1 =∞,m2 =

−∞ and m1 = −∞,m2 =∞. In the case of half-lines problem (DS) consists only of
two cases, namely

(D±)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + [H(u)]x = 0 in Q

u = ±∞ in {a} × (0, T )
u = u0 in Ω × {0}

if Ω = (a,∞), and
(D±)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut + [H(u)]x = 0 in Q

u = ±∞ in {b} × (0, T )
u = u0 in Ω × {0}

if Ω = (−∞, b). We shall write that a statement holds for problem (DS), if it
collectively holds for all problems (D±

±
).

The following definition concerns problem (DR) (see [13]).

Definition 5.1. Let Ω = (a, b), u0 ∈ BV (Ω).(i) An entropy subsolution of (DR) is any u ∈ BV (Q) such that:(a) for every k ∈ R and for all ζ ∈ C1([0, T ];C1
c (Ω)), ζ(⋅, T ) = 0 in Ω, ζ ≥ 0 in Q,

(5.1)

∬
Q
{[u − k]+ζt + sgn+(u − k)[H(u)−H(k)]ζx}dxdt ≥ −∫

Ω
[u0 − k]+ζ(x,0)dx;

(b) for a.e. t ∈ (0, T ) there holds

(5.2) sgn
+
(u(a+, t) − k) [H(u(a+, t)) −H(k)] ≤ 0 if k >m1 ,

(5.3) sgn
+
(u(b−, t) − k) [H(u(b−, t)) −H(k)] ≥ 0 if k >m2 .

(ii) An entropy supersolution of (DR) is any u ∈ BV (Q) such that:(a′) for every k ∈ R and if ζ ∈ C1([0, T ];C1
c (Ω)), ζ(⋅, T ) = 0 in Ω, ζ ≥ 0 in Q,

(5.4)

∬
Q
{[u − k]−ζt + sgn−(u − k)[H(u)−H(k)]ζx}dxdt ≥ −∫

Ω
[u0 − k]−ζ(x,0)dx;

(b′) for a.e. t ∈ (0, T ) there holds

(5.5) sgn
−
(u(a+, t) − k) [H(u(a+, t)) −H(k)] ≤ 0 if k <m1 ,
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(5.6) sgn
−
(u(b−, t) − k) [H(u(b−, t)) −H(k)] ≥ 0 if k <m2 .

(iii) A function u ∈ BV (Q) ∩C([0, T ];L1(Ω)) is an entropy solution of (DR) if it
is both an entropy subsolution and an entropy supersolution.

When Ω = (a,∞) entropy sub- and supersolutions of (DR) are defined as above,
only dropping conditions (5.3) and (5.6); similarly, conditions (5.2) and (5.5) are
omitted if Ω = (−∞, b). Moreover, in these cases we require that u,u belong to
BVloc(Q) ∩L∞(Q).
Remark 5.1. If u,u ∈ BV (Q), the traces u(a+, t) ∶= ess limξ→a+ u(ξ, t), u(b−, t) ∶=
ess limη→b− u(η, t) exist for a.e. t ∈ (0, T ), and similarly for u. Hence the above
definitions are well-posed. By the same token, conditions (5.2)-(5.3) and (5.5)-(5.6)
can be reformulated as follows: for every β ∈ C1

c (0, T ), β ≥ 0,
(5.7a) ess lim

ξ→a+
∫

T

0
sgn

+
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 if k >m1 ,

(5.7b) ess lim
η→b−
∫

T

0
sgn

+
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 if k >m2 ,

(5.7c) ess lim
ξ→a+

∫
T

0
sgn

−
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 if k <m1 ,

(5.7d) ess lim
η→b−
∫

T

0
sgn

−
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 if k <m2 .

The following definitions for problem (DS) are formulated for a wider class of
initial data.

Definition 5.2. Let Ω = (a, b), u0 ∈ L1(Ω).(i) An entropy subsolution of (D+
+
) is any u ∈ C([0, T ];L1(Ω)) such that:(a) for every k ∈ R and ζ ∈ C1

c (Q), ζ ≥ 0 in Q

(5.8) ∬
Q
{[u − k]+ζt + sgn

+
(u − k) [H(u) −H(k)]ζx} dxdt ≥ 0 ,

and for any interval I ⊆ Ω
(5.9) lim

t→0+
∫
I
[u(x, t) − u0(x)]+ dx = 0 .

(ii) An entropy subsolution of (D−
−
) is any u ∈ C([0, T ];L1(Ω)) such that (a) holds,

and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0,

(5.10a) ess lim
ξ→a+

∫
T

0
sgn

+
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 ,

(5.10b) ess lim
η→b−
∫

T

0
sgn

+
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 .

(iii) An entropy subsolution of (D−
+
) is any u ∈ C([0, T ];L1(Ω)) such that (a) holds,

and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0 inequality (5.10b) holds.(iv) An entropy subsolution of (D+

−
) is any u ∈ C([0, T ];L1(Ω)) such that (a) holds,

and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0 inequality (5.10a) holds.
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Definition 5.3. Let Ω = (a, b), u0 ∈ L1(Ω).(i) An entropy supersolution of (D+
+
) is any u ∈ C([0, T ];L1(Ω)) such that:(a′) for every k ∈ R and ζ ∈ C1

c (Q), ζ ≥ 0 in Q

(5.11) ∬
Q
{[u − k]−ζt + sgn−(u − k) [H(u) −H(k)]ζx} dxdt ≥ 0 ,

and for any interval I ⊆ Ω
(5.12) lim

t→0+
∫
I
[u(x, t) − u0(x)]− dx = 0 ;

(b′) for every k ∈ R and β ∈ C1
c (0, T ), β ≥ 0,

(5.13a) ess lim
ξ→a+

∫
T

0
sgn

−
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt ≤ 0 ,

(5.13b) ess lim
η→b−
∫

T

0
sgn

−
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt ≥ 0 .

(ii) An entropy supersolution of (D−
−
) is any u ∈ C([0, T ];L1(Ω)) such that (a′)

holds.(iii) An entropy supersolution of (D−
+
) is any u ∈ C([0, T ];L1(Ω)) such that (a′)

holds, and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0, inequality (5.13a) holds.(iv) An entropy supersolution of (D+

−
) is any u ∈ C([0, T ];L1(Ω)) such that (a′)

holds, and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0, inequality (5.13b) holds.

Definition 5.4. A function u ∈ C([0, T ];L1(Ω)) is called an entropy solution of(DS) if it is both an entropy subsolution and an entropy supersolution of (DS).
Observe that (5.13a)-(5.13b) can be regarded as limiting cases of (5.7c)-(5.7d),

since for every k ∈ R there holds sgn
−
(mi − k) → 0 as mi →∞ (i = 1,2). Similarly,

(5.10a)-(5.10b) can be regarded as limiting cases of (5.7a)-(5.7b) as mi → −∞.

Remark 5.2. Let us prove that every entropy solution of (DS) satisfies the weak
formulation

(5.14) ∬
Q
{uζt +H(u)ζx} dxdt = 0

for every ζ ∈ C1
c (Q).

To this aim, we fix any sequence kj → −∞. By (5.8), for all ζ ∈ C1
c (Q), ζ ≥ 0,

there holds

(5.15) ∬
Q
{[u − kj]+ζt + sgn+(u − kj) [H(u) −H(kj)]ζx} dxdt ≥ 0 .

Let us take the limit as j → ∞ in (5.15). Since u ∈ L1(Q) and H is bounded, we
have

∫
Q
sgn

+
(u − kj) [H(u) −H(kj)]ζx dxdt =∬{u>kj}

H(u)ζx dxdt(5.16)

−∬
Q
H(kj) ζx dxdt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∬{u≤kj}
H(kj)ζx dxdt →∬

Q
H(u)ζx dxdt ,
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and

∬
Q
[u − kj]+ζt dxdt =∬{u>kj}

uζt dxdt −

=0³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∬

Q
kjζt dxdt(5.17)

+∬{u≤kj}
kjζt dxdt →∬

Q
uζt dxdt ,

(here we have used that ∣∬{u≤kj} kjζt dxdt∣ ≤ ∬{u≤kj} ∣u∣ ∣ζt ∣dxdt → 0, as kj → −∞).

In view of (5.16)–(5.17), letting j →∞ in (5.15) gives

(5.18) ∬
Q
{uζt +H(u)ζx} dxdt ≥ 0

for every ζ ∈ C1
c (Q), ζ ≥ 0. Analogously, letting kj →∞ in

(5.19) ∬
Q
{[u − kj]−ζt + sgn−(u − kj) [H(u) −H(kj)]ζx} dxdt ≥ 0

(see (5.11)) gives, for every ζ as above,

(5.20) ∬
Q
{uζt +H(u)ζx} dxdt ≤ 0 .

Therefore the conclusion follows combining (5.18) and (5.20).

Remark 5.3. The conditions (5.10a-5.10b) and (5.13a-5.13b) are entropy boundary
conditions for singular Dirichlet problems and give a meaning, in a hyperbolic sense,
to the boundary conditions ”u = −∞” and ”u = ∞”. As already mentioned in the
Introduction, they coincide with the compatibility conditions (3.5a) and (3.5b) for
entropy solutions of (CL) at points xj where a signed Dirac mass is concentrated.

Remark 5.4. Let u denote either u in (5.8), or u in (5.11). Choosing ζ(x, t) =
α(x)β(t) with α ∈ C1

c (Ω), β ∈ C1
c (0, T ), α,β ≥ 0, gives

(5.21)

∬
Q
{[u(x, t)−k]± α(x)β′(t)+sgn±(u(x, t)−k)[H(u(x, t))−H(k)]α′(x)β(t)}dxdt≥0

for any k ∈ R . Since 0 ≤ [ur − k]± ≤ [u]± + ∣k∣, from the above inequality we get

−∫
Ω
dxα′(x){∫ T

0
sgn

±
(u(x, t)−k)[H(u(x, t))−H(k)]β(t)dt} ≤

≤ ∥β′∥∞∫
Ω
dxα(x){∫ T

0
([u]±(x, t) + ∣k∣) dt} =

= − ∥β′∥∞∫
Ω
dxα′(x){∫ T

0
∫

x

c
([u]±(x, t) + ∣k∣)dt} .

for every c ∈ Ω. Hence the distributional derivative of the function

x↦∫
T

0
sgn

±
(u(x, t)−k) [H(u(x, t)) −H(k)]β(t)dt− ∥β′∥∞∫ T

0
∫

x

c
([u]±(x, t)+∣k∣) dydt

is nonpositive. Therefore, the limits

(5.22a) ess lim
x→a+

∫
T

0
sgn

±
(u(x, t) − k) [H(u(x, t)) −H(k)]β(t)dt ,

(5.22b) ess lim
x→b−

∫
T

0
sgn

±
(u(x, t) − k) [H(u(x, t)) −H(k)]β(t)dt
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exist and are finite, thus the above definitions are well-posed.
The same statement can be applied to entropy solutions of (CL), since they

satisfy inequalities (5.21) in every domain Qj = (xj , xj+1) × (0, T ) (j = 1, . . . , p − 1),
or Q− = (−∞, x1) × (0, T ), Q+ = (xp,∞) × (0, T ) (recall that by Theorem 3.1 and
assumption (A1) the singular part of an entropy solution of (CL) is not supported
in these domains).

Remark 5.5. Conditions (5.10a)-(5.10b) for subsolutions of (D−
−
) can be equiva-

lently rewritten as follows: for all k ∈ R and β as above and for a.e. ξ, η ∈ (a, b)
(5.23a)

∫
T

0
∫

ξ

a
[u(x, t) − k]+β′(t)dxdt ≥ ∫ T

0
sgn

+
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)]β(t)dt

(5.23b)

∫
T

0
∫

b

η
[u(x, t) − k]+β′(t)dxdt ≥ −∫ T

0
sgn

+
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt.

Similarly, conditions (5.13a)-(5.13b) for supersolutions of (D+
+
) equivalently read:

for all k ∈ R and for a.e. ξ, η ∈ (a, b)
(5.24a)

∫
T

0
∫

ξ

a
[u(x, t) − k]−β′(t)dxdt ≥ ∫ T

0
sgn

−
(u(ξ, t) − k) [H(u(ξ, t)) −H(k)] β(t)dt

(5.24b)

∫
T

0
∫

b

η
[u(x, t) − k]−β′(t)dxdt ≥ −∫ T

0
sgn

−
(u(η, t) − k) [H(u(η, t)) −H(k)]β(t)dt.

When Ω = (a,∞) we have the following definition (we omit the formulation for
the case Ω = (−∞, b)).
Definition 5.5. Let Ω = (a,∞), u0 ∈ L1

loc(Ω).(i) An entropy subsolution of (D+) is any u ∈ C([0, T ];L1
loc(Ω)) such that (a) of

Definition 5.2 holds.(ii) An entropy subsolution of (D−) is any u ∈ C([0, T ];L1
loc(Ω)) such that (a) of

Definition 5.2 holds, and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0 inequality (5.10a)

holds.(iii) An entropy supersolution of (D+) is any u ∈ C([0, T ];L1
loc(Ω)) such that (a′)

of Definition 5.3 holds, and for every k ∈ R, β ∈ C1
c (0, T ), β ≥ 0, inequality (5.13a)

holds.(iv) An entropy supersolution of (D−) is any u ∈ C([0, T ];L1
loc(Ω)) such that (a′)

of Definition 5.3 holds.(v) A function u ∈ C([0, T ];L1
loc(Ω)) is called an entropy solution of (DS) if it is

both an entropy subsolution and an entropy supersolution of (DS).
Comparison and uniqueness results for problem (DR) are given by the following

theorem (see [13, Theorem 1.1]).

Theorem 5.1. Let Ω = (a, b). Let u0, v0 ∈ BV (Ω), and m1,m2, n1, n2 ∈ R. Let u
be an entropy subsolution of (DR), and v be an entropy supersolution of (DR) with
u0, m1 and m2 replaced by v0, n1 and n2. Then for a.e. t ∈ (0, T )
(5.25)

∫
Ω
[u(x, t)−v(x, t)]+ dx ≤ ∫

Ω
[u0(x)−v0(x)]+ dx + ([m1−n1]++[m2−n2]+)∥H ′∥∞ t .
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Similar results hold for Ω = (a,∞) and Ω = (−∞, b) if u0, v0 ∈ BVloc(Ω) ∩ L∞(Ω).
In these cases for a.e. t ∈ (0, T ) there holds
(5.26)

∫
R

a
[u(x, t) − v(x, t)]+ dx ≤ ∫ R+∥H′∥∞t

a
[u0(x) − v0(x)]+ dx + [m1 − n1]+∥H ′∥∞ t

for every R > a if Ω = (a,∞), respectively
∫

b

R
[u(x, t) − v(x, t)]+ dx ≤ ∫ b

R−∥H′∥∞t
[u0(x) − v0(x)]+ dx + [m2 − n2]+∥H ′∥∞ t

for every R < b if Ω = (−∞, b). Therefore, in all cases there exists at most one
solution of (DR).

As for problem (DS), the following holds.

Theorem 5.2. Let (A0) hold. Let u, u be an entropy sub- and supersolution of(DS) with the same boundary conditions. Then u ≤ u a.e. in Q. In particular,
there exists at most one entropy solution of (DS).
Proof. We only give the proof for (D−

+
), as in the other cases of (DS) it is similar.

We use the Kružkov doubling method adapted to boundary valued problems (see
[3, 10, 11, 12]). Let ρǫ (ǫ > 0) be a symmetric mollifier in R, and set

ζ(x, t, y, s) ∶= ρǫ1(x − y)ρǫ2(t − s)σ1(x + y
2
)σ2( t + s

2
) ((x, t), (y, s) ∈ Q) ,

with σ1 ∈ C1
c (Ω), σ2 ∈ C1

c (0, T ), σ1 ≥ 0, σ2 ≥ 0. From (5.11) and (5.8) we get

∬
Q
{sgn −(u(x, t) − u(y, s))[H(u(x, t)) −H(u(y, s))]ζx(x, t, y, s) +
+[u(x, t) − u(y, s)]− ζt(x, t, y, s)} dxdt ≥ 0 for all (y, s) ∈ Q,

∬
Q
{sgn +(u(y, s) − u(x, t))[H(u(y, s)) −H(u(x, t))]ζy(x, t, y, s) +
+[u(y, s)−u(x, t)]+ ζs(x, t, y, s)} dyds ≥ 0 for all (x, t) ∈ Q.

Recalling that [u]+ = [−u]− and sgn+(u) = −sgn−(−u) (u ∈ R), we sum the above
inequalities integrated over Q :
(5.27)

∬∬
Q×Q

ρǫ1(x − y)ρǫ2(t − s){[u(x, t) − u(y, s)]− σ1 (x + y
2
)σ′2( t + s2 )+

+sgn−(u(x, t)−u(y, s))[H(u(x, t))−H(u(y, s))]σ′1 (x+y2 )σ2 ( t+s
2
)}dxdtdyds ≥ 0.

Set

I1 ∶= ∬∬
Q×Q

ρǫ1(x − y)ρǫ2(t − s)[u(x, t) − u(y, s)]− σ1(y)σ′2( t + s2 )dxdtdyds ,
I2 ∶=∬∬

Q×Q
ρǫ1(x − y)ρǫ2(t − s)×

× sgn−(u(x, t) − u(y, s))[H(u(x, t)) −H(u(y, s))]σ′1(y)σ2( t + s
2
)dxdtdyds .

Observe that the difference between I1 and the first term in (5.27) vanishes as
ǫ1 → 0+; the same holds for the difference between I2 and the second term in (5.27).

Let a < ξ < η < b be fixed. By standard approximation arguments we can choose

σ1(y) ≡ σ1,n(y) = n(y − ξ)χ[ξ,ξ+1/n](y) + χ(ξ+1/n,η−1/n)(y) − n(y − η)χ[η−1/n,η](y),
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where n ∈ N and y ∈ Ω, thus
σ′1(y) = nχ[ξ,ξ+1/n](y) − nχ[η−1/n,η](y) .

With this choice of σ1, I2 reads

I2 = n∫
T

0
ds∫

ξ+1/n

ξ
dy∫

b

a
dxρǫ1(x − y) ×(5.28)

×∫
T

0
dt sgn −(u(x, t) − u(y, s))[H(u(x, t)) −H(u(y, s))]ρǫ2(t − s)σ2( t + s

2
) −

−n∫
T

0
ds∫

η

η−1/n
dy∫

b

a
dxρǫ1(x − y) ×

×∫
T

0
dt sgn −(u(x, t) − u(y, s))[H(u(x, t)) −H(u(y, s))]ρǫ2(t − s)σ2( t + s

2
) .

By (5.24a) and (5.23b), from (5.28) we obtain for a.e. ξ, η ∈ (a, b)
lim
n→∞

I2 = ∫
T

0
ds∫

b

a
dxρǫ1(x − ξ) ×

×∫
T

0
dt sgn −(u(x, t) − u(ξ, s))[H(u(x, t)) −H(u(ξ, s))]ρǫ2(t − s)σ2( t + s

2
) −

−∫
T

0
ds∫

b

a
dxρǫ1(x − η) ×

×∫
T

0
dt sgn −(u(x, t) − u(η, s))[H(u(x, t)) −H(u(η, s))]ρǫ2(t − s)σ2( t + s

2
) ≤

≤ ∫
T

0
ds∫

b

a
dxρǫ1(x − ξ)∫ T

0
dt∫

x

a
dz [u(z, t) − u(ξ, s)]− [ρǫ2(t − s)σ2(t + s

2
)]

t

+

+∫
T

0
dt∫

b

a
dxρǫ1(x − η)∫ T

0
ds∫

b

η
dz [u(z, s) − u(x, t)]+ [ρǫ2(t − s)σ2( t + s

2
)]

s

=∶ S .

As ǫ1 → 0+ we obtain that

lim
ǫ1→0+

S = ∫
T

0
ds∫

T

0
dt∫

ξ

a
dz [u(z, t) − u(ξ, s)]− [ρǫ2(t − s)σ2( t + s

2
)]

t

+(5.29)

+∫
T

0
dt∫

T

0
ds∫

b

η
dz [u(z, s) − u(η, t)]+ [ρǫ2(t − s)σ2( t + s

2
)]

s

≤

≤ Cǫ2T {∫ T

0
dt∫

ξ

a
dz ∣u(z, t)∣ + (ξ − a)∫ T

0
∣u(ξ, s)∣ds +

+∫
T

0
ds∫

b

η
dz ∣u(z, s)∣ + (b − η)∫ T

0
∣u(η, t)∣dt} .

Clearly, there holds

lim
ξ→a+

∫
T

0
dt∫

ξ

a
dz ∣u(z, t)∣ = lim

η→b−
∫

T

0
ds∫

b

η
dz ∣u(z, s)∣ = 0 .

On the other hand, since ∫ T

0 ∣u(ξ, s)∣ds ≥ 0 and the map ξ → ∫ T

0 ∣u(ξ, s)∣ds belongs

to L1(Ω), there holds

ess lim inf
ξ→a+

(ξ − a)∫ T

0
∣u(ξ, s)∣ds = 0

- for, otherwise there would exist c, δ > 0 such that (ξ − a)∫ T

0 ∣u(ξ, s)∣ds ≥ c for a.e.

ξ ∈ (a, a+ δ), thus ξ → ∫ T

0 ∣u(ξ, s)∣ds /∈ L1(Ω). Therefore, for every n ∈ N there exist
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δn > 0 and En ⊆ (a, a + δn), ∣En∣ > 0, such that (ξ − a)∫ T

0
∣u(ξ, s)∣ds < 1/n for a.e.

ξ ∈ En. It follows that a sequence {ξn} ⊆ Ω exists, such that:

(i) ξn is a Lebesgue point of ∫ T

0
∣u(ξ, s)∣ds,

(ii) ξn → a+ as n→∞, and (ξn − a)∫ T

0
∣u(ξn, s)∣ds < 1

n
for all n ∈ N .

Similarly, there holds

ess lim inf
η→b−

(b − η)∫ T

0
∣u(η, t)∣dt = 0 ,

hence there exists {ηn} ⊆ Ω, ηn → b− as n→∞, with properties analogous to (i)-(ii)
above. Then writing (5.29) with ξ = ξn, η = ηn and letting n → ∞ we obtain that
the right-hand side of (5.29) goes to zero.

To sum up, following the above procedure and letting ǫ2 → 0+ from (5.27), we
get for any σ2 ∈ C1

c (0, T ), σ2 ≥ 0,
(5.30) ∬

Q
[u(x, t) − u(x, t)]− σ′2(t)dxdt ≥ 0 .

Let 0 < t1 < t2 ≤ T be fixed. By standard approximation arguments we can choose

σ2(t) ≡ σ2,n(t) = n(t−t1)χ[t1,t1+1/n]+χ(t1+1/n,t2−1/n)−n(t−t2)χ[t2−1/n,t2] (n ∈ N) .
Then from (5.30) we get for all n

n∫
t2

t2−1/n
∫
Ω
[u(x, t) − u(x, t)]− dxdt ≤ n∫

t1+1/n

t1
∫
Ω
[u(x, t) − u(x, t)]− dt ,

whence as n→∞

∫
Ω
[u(x, t2) − u(x, t2)]− dx ≤ ∫

Ω
[u(x, t1) − u(x, t1)]− dx .

Since u,u ∈ C([0, T ];L1(Ω)), as t1 → 0+ by (5.9) and (5.12) there holds

∫
Ω
[u(x, t2) − u(x, t2)]− dx = 0 for all t2 ∈ (0, T ] .

This proves the result. �

For future reference we prove the following generalization of [3, Lemma 4.4].

Proposition 5.3. (i) Let u be an entropy solution either of (D+
+
), or of (D−

+
).

Then there exists f+a ∈ L∞(0, T ) such that

(5.31) ess lim
x→a+

∫
T

0
H(u(x, t))β(t)dt = ∫ T

0
f+a (t)β(t)dt

for every β ∈ C1
c (0, T ), and

(5.32) limsup
u→∞

H(u) ≤ f+a (t) ≤ sup
u∈R

H(u) for a.e. t ∈ (0, T ) .
(ii) Let u be an entropy solution either of (D+

−
), or of (D−

−
). Then there exists

f−a ∈ L∞(0, T ) such that

(5.33) ess lim
x→a+

∫
T

0
H(u(x, t))β(t)dt = ∫ T

0
f−a (t)β(t)dt

for every β ∈ C1
c (0, T ), and

(5.34) inf
u∈R

H(u) ≤ f−a (t) ≤ lim inf
u→−∞

H(u) for a.e. t ∈ (0, T ) .
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(iii) Let u be an entropy solution either of (D+
−
), or of (D+

+
). Then there exists

f+b ∈ L∞(0, T ) such that

(5.35) ess lim
x→b−

∫
T

0
H(u(x, t))β(t)dt = ∫ T

0
f+b (t)β(t)dt

for every β ∈ C1
c (0, T ), and

(5.36) inf
u∈R

H(u) ≤ f+b (t) ≤ lim inf
u→∞

H(u) for a.e. t ∈ (0, T ) .
(iv) Let u be an entropy solution either of (D−

+
), or of (D−

−
). Then there exists

f−b ∈ L∞(0, T ) such that

(5.37) ess lim
x→b−

∫
T

0
H(u(x, t))β(t)dt = ∫ T

0
f−b (t)β(t)dt

for every β ∈ C1
c (0, T ), and

(5.38) limsup
u→−∞

H(u) ≤ f−b (t) ≤ sup
u∈R

H(u) for a.e. t ∈ (0, T ) .
Proof. The existence of the limits in the left-hand side of (5.31), (5.33), (5.35) and
(5.37) follows from (5.22a)-(5.22b), since for a.e. x ∈ Ω there holds

x↦ ∫
T

0
H(u(x, t))β(t)dt = ∫ T

0
[sgn

+
(u(x, t)) − sgn

−
(u(x, t))]H(u(x, t))β(t)dt

(recall that H(0) = 0). On the other hand, for every sequence {xn}, xn → a+, the
sequence {H(u(xn, ⋅))} is bounded in L∞(0, T ). Hence there exist a subsequence{xnk

} ⊆ {xn} and a function f+a ∈ L∞(0, T ) (independent of {xnk
}) such that

H(u(xnk
, ⋅)) ∗⇀ f+a in L∞(0, T ), thus (5.31) follows. Equalities (5.33), (5.35) and

(5.37) are similarly proven.
Let us prove (5.32). Clearly, there holds f+a (t) ≤ supu∈RH(u) for a.e. t ∈ (0, T ).

To prove the first inequality, let us choose in (5.8) ζ(x, t) = ρ(x)β(t) with ρ ∈
C1

c ([a, b)), ρ ≥ 0, β ∈ C1
c (0, T ), β ≥ 0. By standard arguments we can also choose

ρ = ασǫ with α ∈ C1
c ([a, b)), α ≥ 0, and

(5.39) σǫ(x) ∶= 2(x − a) − ǫ
ǫ

χ[a+ǫ/2,a+ǫ](x) + χ(a+ǫ,b](x) (x ∈ Ω) .
Then for every k ∈ R we obtain that

∬
Q
{[u(x, t) − k]+α(x)σǫ(x)β′(t) +
+sgn

+
(u(x, t) − k)[H(u(x, t)) −H(k)]α′(x)σǫ(x)β(t)}dxdt ≥

≥ −2
ǫ
∫

T

0
dtβ(t)∫ a+ǫ

a+ǫ/2
sgn

+
(u(x, t) − k)[H(u(x, t)) −H(k)]α(x)dx .
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Letting ǫ → 0+ and using (5.13a) and (5.31), we get that for every k ∈ R
∬

Q
{[u(x, t)−k]+α(x)β′(t) + sgn+(u(x, t)−k)[H(u(x, t))−H(k)]α′(x)β(t)}dxdt ≥
≥ −α(a) ess lim

x→a+
∫

T

0
sgn

+
(u(x, t) − k)[H(u(x, t)) −H(k)]β(t)dt =

= −α(a){ess lim
x→a+

∫
T

0
[H(u(x, t)) −H(k)]β(t)dt +

+ ess lim
x→a+

∫
T

0
sgn

−
(u(x, t) − k)[H(u(x, t)) −H(k)]β(t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

} ≥

≥ −α(a)∫ T

0
[f+a (t) −H(k)]β(t)dt .

Letting k →∞ in the above inequality gives

0 ≤ ∫
T

0
[f+a (t) − lim sup

k→∞
H(k)]β(t)dt ,

whence by the arbitrariness of β inequality (5.32) follows.
To prove (5.34) we argue as for (5.32), using inequality (5.10a), (5.11) and (5.33)

instead of (5.8), (5.13a) and (5.31). Then we get for every k ∈ R
∬

Q
{[u(x, t)−k]−α(x)β′(t)+sgn−(u(x, t)−k)[H(u(x, t))−H(k)]α′(x)β(t)}dxdt ≥
≥ −α(a) ess lim

x→a+
∫

T

0
sgn

−
(u(x, t)−k)[H(u(x, t))−H(k)]β(t)dt =

= −α(a){ − ess lim
x→a+

∫
T

0
[H(u(x, t)) −H(k)]β(t)dt +

+ ess lim
x→a+

∫
T

0
sgn

+
(u(x, t) − k)[H(u(x, t)) −H(k)]β(t)dt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

} ≥

≥ α(a)∫ T

0
[f−a (t) −H(k)]β(t)dt .

As k → −∞ in the above inequality, by the arbitrariness of β we obtain

f−a (t) ≤ lim inf
k→−∞

H(k) for a.e. t ∈ (0, T ) ,
thus (5.34) follows. The proof of (5.36) and (5.38) is similar to that of (5.32) and
(5.34), using

(5.40) σǫ(x) ∶= χ[a,b−ǫ)(x) − 2(x − b) + ǫ
ǫ

χ[b−ǫ,b−ǫ/2](x) (x ∈ Ω)
instead of (5.39); we leave the details to the reader. �

Finally we prove the following result.

Lemma 5.4. Let u be an entropy solution of (DR). Then for every t ∈ (0, T ]
(5.41) ∥u(⋅, t)∥L1(Ω) ≤ ∥u0∥L1(Ω) + 2 ∥H∥∞t .
Proof. By (5.1) and (5.4) there holds

∬
Q
{∣u − k∣ζs + sgn(u − k) [H(u)−H(k)]ζx} dxds ≥ −∫

Ω
∣u0 − k∣ ζ(x,0)dx
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for every k ∈ R and ζ as above. By standard arguments we can choose ζ(x, s) =
αp(x)βq(s) with

αp(x) = p(x − a)χ[a,a+1/p)(x) + χ[a+1/p,b−1/p)(x) − p(x − b)χ[b−1/p,b](x) ,
βq(s) = χ[0,t−1/q)(s) − q(s − t)χ[t−1/q,t)(s)

for any fixed t ∈ (0, T ] and p, q ∈ N sufficiently large. Then for k = 0 as q → ∞ we
get

∫
Ω
∣u(x, t)∣αp(x)dx −∫

Ω
∣u0(x)∣αp(x)dx ≤ 2 ∥H∥∞t ,

whence as p→∞ (5.41) follows. �

6. Problem (D): existence

Let us recall the following result (see [1, 13]).

Theorem 6.1. Let Ω = (a, b), and let u0 ∈ BV (Ω). Then there exists a unique
entropy solution u ∈ BV (Q) ∩C([0, T ];L1(Ω)) of problem (DR). Moreover,

(6.1) ∥u∥L∞(Q) ≤max{∣m1∣, ∣m2 ∣, ∥u0∥L∞(Ω)} .
The same holds for Ω = (a,∞) and Ω = (−∞, b) with u0 ∈ BVloc(Ω)∩L∞(Ω), suppu0

compact. In these cases there holds u ∈ BVloc(Q)∩L∞(Q)∩C([0, T ];L1
loc(Ω)), and

inequality (6.1) is replaced by

(6.2) ∥u∥L∞(Q) ≤max{∣m1∣, ∥u0∥L∞(Ω)}
if Ω = (a,∞), respectively by ∥u∥L∞(Q) ≤max{∣m2∣, ∥u0∥L∞(Ω)} if Ω = (−∞, b).

The above uniqueness claim follows from Theorem 5.1. Let us outline the proof
of the existence part; we limit ourselves to the case Ω = (a,∞), the proof being the
same for Ω = (−∞, b) and easier for Ω = (a, b).

Let f1,ǫ, f2,ǫ ∈ C∞(R) (0 < ǫ < 1) be a partition of unity:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1,ǫ = 1 in (−∞, a + 2
√
ǫ] , supp f1,ǫ ⊆ (−∞, a + 3

√
ǫ]

f2,ǫ = 1 in [a + 3√ǫ,∞) , suppf2,ǫ ⊆ [a + 2√ǫ,∞) ,
0 ≤ fi,ǫ ≤ 1 , ∑2

i=1 fi,ǫ = 1 in R ,

such that, for i = 1,2,
sup

ǫ∈(0,1)
∥f ′i,ǫ∥L1(R) <∞ , sup

ǫ∈(0,1)

√
ǫ ∥f ′i,ǫ∥L∞(R) <∞ , sup

ǫ∈(0,1)

√
ǫ∥f ′′i,ǫ∥L1(R) <∞.

Let u0 ∈ BVloc(Ω) ∩L∞(Ω) have compact support. Set

(6.3) u0ǫ ∶=m1f1,ǫ + [σǫ ∗ u0]f2,ǫ ,
where {σǫ} is a family of standard mollifiers with suppσǫ ⊆ [−√ǫ,√ǫ]. Then there
holds u0ǫ ∈ C∞(R), u0ǫ =m1 in [a, a +√ǫ], suppu0ǫ compact. Moreover,

(6.4) sup
ǫ∈(0,1)

∥u0ǫ∥L∞(Ω) ≤max{∣m1∣, ∥u0∥L∞(Ω)} ,

(6.5) sup
ǫ∈(0,1)

∥u′0ǫ∥L1(Ω) <∞ , sup
ǫ∈(0,1)

ǫ ∥u′′0ǫ∥L1(Ω) <∞

(6.6) u0ǫ → u0 in Lp(Ω) for every p ∈ [1,∞) , u0ǫ
∗

⇀ u0 in L∞(Ω) .
Let H ∈W 1,∞(R), H(0) = 0. Set

Hǫ(u) ∶= gǫ(u) ([σǫ ∗H](u) − [σǫ ∗H](0)) (u ∈ R) ,
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where the family {gǫ} ∈ C∞c (R) satisfies gǫ = 1 in (−1/ǫ,1/ǫ), 0 ≤ gǫ(x) ≤ 1 in R,
supp gǫ ⊆ (−2/ǫ,2/ǫ). It is easily seen that

(6.7) { Hǫ(0) = 0 , ∥Hǫ∥W 1,∞(R) ≤ ∥H∥W 1,∞(R) ,
Hǫ →H uniformly on the compact subsets of R .

Let uǫ ∈ C2,1(Q) be the unique classical solution of the parabolic problem

(Dǫ)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uǫt + [Hǫ(uǫ)]x = ǫuǫxx in Q

uǫ =m1 in {a} × (0, T )
uǫ = u0ǫ in Ω × {0} ,

with m1 ∈ R, u0ǫ and Hǫ as above (e.g., see [8]).

Lemma 6.2. There holds

(6.8) sup
ǫ∈(0,1)

∥uǫ∥L∞(Q) ≤max{∣m1∣, ∥u0∥L∞(Ω)} ,
and there exists c > 0 only depending on m1, TV (u0;Ω), and ∥H∥W 1,∞(R)) such that

(6.9) sup
ǫ∈(0,1)

∥uǫx∥L∞(0,T ;L1(Ω)) ≤ c ,

(6.10) sup
ǫ∈(0,1)

∥uǫt∥L∞(0,T ;L1(Ω)) ≤ c ,

(6.11) sup
ǫ∈(0,1)

(ǫ∥uǫx∥L∞(Q)) ≤ c .

Proof. Inequality (6.8) follows by the maximum principle and (6.4). Arguing as in
the proof of [13, Proposition 3.1] (see also [1]) and using (6.5) gives (6.9)-(6.10). As
for (6.11), integrating the first equation of (Dǫ) over (a,x) gives
(6.12) ǫuǫx(x, t) − ǫuǫx(a, t) = ∫ x

a
uǫt(y, t)dy +Hǫ(uǫ(x, t)) −Hǫ(m1) ,

whence

ǫ ∣uǫx(a, t)∣ ≤ ∫ x

a
∣uǫt(y, t)∣dy + 2∥H∥∞ + ∣uǫx(x, t)∣ .

Integrating the above inequality over (a, a + 1) and using (6.9)-(6.10) we get

(6.13) ǫ ∣uǫx(a, t)∣ ≤ 2∥H∥∞ + c̃
for some c̃ > 0 independent of ǫ. Then by (6.9)-(6.10) and (6.12)-(6.13) the estimate
in (6.11) follows. �

Proof of Theorem 6.1. By estimates (6.8)-(6.10) the family {uǫ} is bounded in
L∞(Q), and there exists M > 0 (only depending on m1, TV (u0;Ω), ∥H∥W 1,∞(R))
such that

sup
ǫ∈(0,1)

∥uǫx∥L∞(0,T ;L1(Ω)) + sup
ǫ∈(0,1)

∥uǫt∥L∞(0,T ;L1(Ω)) ≤M .

Then by embedding theorems there exist a sequence {uǫn} ⊆ {uǫ} and a function
u ∈ BV (Q) ∩C([0, T ];L1(Ω)) such that

(6.14) uǫn → u in C([0, T ];L1(Ω)) as n→∞ .



20 BERTSCH, SMARRAZZO, TERRACINA, AND TESEI

Arguing as in [1] shows that u is an entropy solution of problem (DR), In fact,
let E,Fǫ ∶ R → R, E ∈ C2(R), Fǫ ∈ C1(R) and F ′ǫ = E′H ′ǫ . Multiplying the first

equation in (Dǫ) by E′(uǫ) ζ gives for any ζ ∈ C1([0, T ];C1
c (Ω)), ζ(⋅, T ) = 0 in Ω,

−∫
Ω
E(u0ǫ)(x)ζ(x,0)dx + ǫ∬

Q
{E′′(uǫ)u2

ǫxζ + [E(uǫ)]xζx} dxdt =(6.15)

= ∬
Q
{E(uǫ)ζt +Fǫ(uǫ)ζx}dxdt + ∫ T

0
{Fǫ(m1) − ǫE′(m1)uǫx(a, t)}ζ(a, t)dt .

By standard regularization arguments we can choose in (6.15) E(uǫ) = [uǫ − k]±,
thus obtaining for all k ∈ R and ζ as above, ζ ≥ 0,

∬
Q
{[uǫ − k]±ζt + sgn±(uǫ − k) [Hǫ(uǫ) −Hǫ(k)]ζx} dxdt ≥(6.16)

≥ ǫ∬
Q
sgn

±
(uǫ − k)uǫx ζx dxdt − ∫

Ω
[u0ǫ − k]± ζ(x,0)dx −

−sgn
±
(m1 − k)∫ T

0
[Hǫ(m1) −Hǫ(k) − ǫuǫx(a, t)]ζ(a, t)dt .

If ζ(⋅, t) ∈ C1
c (Ω) for all t ∈ (0, T ), from (6.16) we obtain

∬
Q
{[uǫ − k]±ζt + sgn±(uǫ − k) [Hǫ(uǫ) −Hǫ(k)]ζx} dxdt ≥(6.17)

≥ ǫ∬
Q
sgn

±
(uǫ − k)uǫx ζx dxdt −∫

Ω
[u0ǫ − k]± ζ(x,0)dx .

On the other hand, choosing in (6.16) ζ(x, t) = χ[a, ξ+1/n)(x)β(t) (ξ ∈ Ω, n ∈ N) with
β ∈ C1

c (0, T ), β ≥ 0, and letting n→∞ plainly gives for every k ∈ R

∫
T

0
∫

ξ

a
[uǫ(x, t) − k]±β′(t)dxdt −(6.18)

−∫
T

0
sgn

±
(uǫ(ξ, t) − k) [Hǫ(uǫ(ξ, t)) −Hǫ(k)]β(t)dt ≥

≥ ǫ∫
T

0
sgn

±
(uǫ(ξ, t) − k)uǫx(ξ, t)β(t)dt −

− sgn
±
(m1 − k)∫ T

0
[Hǫ(m1) −Hǫ(k) − ǫuǫx(a, t)]β(t)dt .

Multiplying the first equation of (Dǫ) by ζ(x, t) = χ[a, ξ+1/n)(x)β(t) and letting
n→∞, one easily sees that

− ǫ∫
T

0
uǫx(a, t)β(t)dt = − ǫ∫ T

0
uǫx(ξ, t)β(t)dt −(6.19)

−∫
T

0
∫

ξ

a
[uǫ(x, t) − k]β′(t)dxdt +∫ T

0
[Hǫ(uǫ(ξ, t)) −Hǫ(m1)]β(t)dt .

From (6.18)-(6.19) we get

∫
T

0
∫

ξ

a
{[uǫ(x, t) − k]± − sgn±(m1 − k)[uǫ(x, t) − k]}β′(t)dxdt ≥(6.20)

≥ ∫
T

0
[sgn

±
(uǫ(ξ, t)−k)−sgn±(m1−k)] [Hǫ(uǫ(ξ, t))−Hǫ(k)]β(t)dt +

+ ǫ∫
T

0
[sgn

±
(uǫ(ξ, t) − k)sgn±(m1 − k)] uǫx(ξ, t)β(t)dt .
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By (6.7), (6.9) and (6.14) we can take the limit as ǫn → 0+ in (6.17) and (6.20)
(written with ǫ = ǫn). It follows that the function u in (6.14) satisfies the following
inequalities:
- for every k ∈ R and for all ζ ∈ C1([0, T ];C1

c (Ω)), ζ(⋅, T ) = 0 in Ω, ζ ≥ 0 in Q,

∬
Q
{[u − k]±ζt + sgn

±
(u − k) [H(u)−H(k)]ζx} dxdt ≥ −∫

Ω
[u0 − k]± ζ(x,0)dx ;

- for every k ∈ R and β ∈ C1
c (0, T ), β ≥ 0 and for a.e. ξ ∈ Ω,

∫
T

0
∫

ξ

a
{[u(x, t) − k]± − sgn±(m1 − k)[u(x, t) − k]}β′(t)dxdt ≥

≥ ∫
T

0
[sgn

±
(u(ξ, t) − k) − sgn

±
(m1 − k)] [H(u(ξ, t))−H(k)]β(t)dt .

Letting ξ → a+ in the latter inequality and using Remark 5.1 we conclude that u is
an entropy solution of (DR). Hence the result follows. ◻

Remark 6.1. In the proof of Theorem 6.1 when Ω = (a, b) one uses the family of
solutions of the problem

(D′ǫ)
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uǫt + [Hǫ(uǫ)]x = ǫuǫxx in Q

uǫ =m1 in {a} × (0, T )
uǫ =m2 in {b} × (0, T )
uǫ = u0ǫ in Ω × {0} ,

with m1,m2 ∈ R, Hǫ as above and u0ǫ defined by a suitable partition of unity; we
leave the details to the reader.

Concerning (DS) the following holds.

Theorem 6.3. Let (A0) hold. When Ω = (a, b) for any u0 ∈ L1(Ω) there exists an
entropy solution of (DS). The same holds for any u0 ∈ L1

loc(Ω) if Ω = (a,∞), or
Ω = (−∞, b).
Proof. Let Ω = (a, b). Let us prove the result for (D−

+
), the proof being the same

for (D+
+
), (D−

−
) and (D+

−
). Let u0 ∈ BV (Ω). By Theorem 6.1, for all n, p ∈ N there

exists an entropy solution un,−p ∈ BV (Q)∩C([0, T ];L1(Ω)) of problem (DR) with
m1 = n, m2 = −p. In particular, there holds:

(a) by (5.8)-(5.9) and (5.11)-(5.12), for every k ∈ R and for all ζ ∈ C1([0, T ];C1
c (Ω)),

ζ(⋅, T ) = 0 in Ω, ζ ≥ 0 in Q,

∬
Q
{[un,−p − k]±ζt + sgn±(un,−p − k) [H(un,−p) −H(k)]ζx} dxdt ≥(6.21)

≥ −∫
Ω
[u0 − k]± ζ(x,0)dx ;

(b) by (5.24a), for every β ∈ C1
c (0, T ), β ≥ 0, for a.e. ξ ∈ Ω and for all k < n and

p ∈ R,

∫
T

0
∫

ξ

a
[un,−p(x, t) − k]−β′(t)dxdt ≥(6.22a)

≥ ∫
T

0
sgn

−
(un,−p(ξ, t) − k) [H(un,−p(ξ, t)) −H(k)]β(t)dt;
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(c) by (5.23b), for every β ∈ C1
c (0, T ), β ≥ 0, for a.e. η ∈ Ω and for all n ∈ R and

k > −p,
∫

T

0
∫

b

η
[un,−p(x, t) − k]+β′(t)dxdt ≥(6.22b)

≥ −∫
T

0
sgn

+
(un,−p(η, t) − k) [H(un,−p(η, t)) −H(k)]β(t)dt;

(d) by (5.41), for every t ∈ (0, T )
(6.23) ∥un,−p(⋅, t)∥L1(Ω) ≤ ∥u0∥L1(Ω) + 2 ∥H∥∞t .
Moreover, by inequality (5.25), for all n, p ∈ N there holds a.e. in Q

(6.24a) un,−p ≤ un+1,−p ,

(6.24b) un,−p ≥ un,−p−1 .

Let p ∈ R be fixed. By (6.23) and (6.24a) there exists u∞,−p ∈ L∞(0, T ;L1(Ω))
such that

(6.25) un,−p → u∞,−p in L1(Q) as n→∞.

Then letting n →∞ in (6.21) gives

∬
Q
{[u∞,−p − k]±ζt + sgn±(u∞,−p − k) [H(u∞,−p) −H(k)]ζx} dxdt ≥(6.26)

≥ −∫
Ω
[u0 − k]± ζ(x,0)dx ,

whereas from (6.22a)-(6.22b) we get, for every β ∈ C1
c (0, T ), β ≥ 0, for a.e. ξ, η ∈ Ω

and for all k, p ∈ R:
∫

T

0
∫

ξ

a
[u∞,−p(x, t) − k]−β′(t)dxdt ≥(6.27a)

≥ ∫
T

0
sgn

−
(u∞,−p(ξ, t) − k) [H(u∞,−p(ξ, t)) −H(k)]β(t)dt ,

∫
T

0
∫

b

η
[u∞,−p(x, t) − k]+β′(t)dxdt ≥(6.27b)

≥ −∫
T

0
sgn

+
(u∞,−p(η, t)−k) [H(u∞,−p(η, t))−H(k)]β(t)dt (k > −p) .

Moreover, from (6.23) and (6.24b) we obtain

(6.28) ∥u∞,−p(⋅, t)∥L1(Ω) ≤ ∥u0∥L1(Ω) + ∥H∥∞t for every t ∈ (0, T ) ,

(6.29) u∞,−p ≥ u∞,−p−1 a.e. in Q.

By (6.28)-(6.29) there exists u∞,−∞ ∈ L∞(0, T ;L1(Ω)) such that

(6.30) u∞,−p → u∞,−∞ in L1(Q) as p→∞.

Then letting p → ∞ in (6.26) shows that u∞,−∞ satisfies (5.8) and (5.11). In
addition, letting p → ∞ in (6.27a)-(6.27b) proves that u∞,−∞ satisfies (5.10b) and
(5.13a) for every k ∈ R (see Remark 5.5). By Remark 3.1 and arguing as in the
proof of [2, Proposition 3.20], it can be checked that u∞,−∞ ∈ C([0, T ];L1(Ω)) and,
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by construction, u∞,−∞(⋅,0) = u0 in M(Ω). Therefore (5.9) and (5.12) follow as
well, and u∞,−∞ is an entropy solution of (D−

+
).

It remains to remove the assumption u0 ∈ BV (Ω). To this purpose, let v0 ∈
BV (Ω), and let v∞,−∞ be the entropy solution of (D−

+
) with initial data v0 con-

structed by the above procedure (and with the same boundary conditions considered
in the construction of u∞,−∞). Then by (5.25) there holds

(6.31) ∥u∞,−∞(⋅, t) − v∞,−∞(⋅, t)∥L1(Ω) ≤ ∥u0 − v0∥L1(Ω) for every t ∈ (0, T ) .
Let u0 ∈ L1(Ω), let {u0j} ⊆ BV (Ω) be any sequence such that u0j → u0 in L1(Ω).
Let {uj} ≡ {(u∞,−∞)j} be the sequence of entropy solutions to problem (D−

+
) con-

structed as above, with initial data u0j . Then for all j ∈ N:
(a) for every k ∈ R and for all ζ ∈ C1([0, T ];C1

c (Ω)), ζ(⋅, T ) = 0 in Ω, ζ ≥ 0 in Q,

∬
Q
{[uj − k]±ζt + sgn±(uj − k) [H(uj) −H(k)]ζx} dxdt ≥(6.32)

≥ −∫
Ω
[u0j − k]± ζ(x,0)dx ;

(b) for all β ∈ C1
c (0, T ), β ≥ 0, for all k ∈ R and for a.e. ξ, η ∈ Ω:

∫
T

0
∫

ξ

a
[uj(x, t) − k]−β′(t)dxdt ≥(6.33a)

≥ ∫
T

0
sgn

−
(uj(ξ, t) − k) [H(uj(ξ, t)) −H(k)]β(t)dt ,

∫
T

0
∫

b

η
[uj(x, t) − k]+β′(t)dxdt ≥(6.33b)

≥ −∫
T

0
sgn

+
(uj(η, t) − k) [H(uj(η, t)) −H(k)]β(t)dt .

By (6.31) there holds

∥ui − uj∥L1(Q) ≤ T ∥u0i − u0j∥L1(Ω) for all i, j ∈ N ,

thus there exists u ∈ L1(Q) such that uj → u in L1(Q) as j →∞. As before, there
holds u ∈ C([0, T ];L1(Ω)). Then letting j → ∞ in (6.32) and (6.33a)-(6.33b) the
result for (D−

+
) follows. The other cases of (DS) can be dealt with similarly, hence

the conclusion follows if Ω = (a, b).
The above arguments easily extend to the case of half-lines. For instance, let

Ω = (a,∞), m1 =∞ and u0 ∈ BV (Ω)∩L∞(Ω). Then by Theorem 6.1 and inequality
(5.26) there exists a sequence {un} of entropy solutions of (DR), such that for every
t ∈ (0, T ) ∥un(⋅, t)∥L1(Ω) ≤ ∥u0∥L1(Ω) + 2 ∥H∥∞t, and un ≤ un+1 a.e. in Q for all
n ∈ N . Then letting n →∞ we obtain an entropy solution u∞ of (D+) in this case.
Moreover, if v0 ∈ BV (Ω) ∩L∞(Ω) and v∞ is the corresponding entropy solution of(D+) with initial data v0 constructed as before, by (5.26) there holds

(6.34) ∥u∞(⋅, t) − v∞(⋅, t)∥L1(a,R) ≤ ∥u0 − v0∥L1(a,R+∥H′∥∞t) for every t ∈ (0, T ) .
Now let u0 ∈ L1

loc(Ω), and let {u0j} ⊆ BV (Ω)∩L∞(Ω), suppu0j compact, u0j →

u0 in L1
loc(Ω). Let {uj} ≡ {(u∞)j} be the sequence of entropy solutions of (D+)

constructed as above, with initial data u0j. By (6.34) {uj} is a Cauchy sequence in
L∞(0, T ;L1(K)) for every compact subset K ⊂ Ω. Then by a diagonal argument
the conclusion easily follows. �
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7. Well-posedness of problem (CL)
In this section we prove Theorem 3.3.

We first prove the existence claim. Rewrite (A1) as follows:
(7.1) u0s =

r

∑
j=1

c+j δx′j −
s

∑
j=1

c−j δx′′j (c±j > 0, r + s = p) .
For every j = 1, . . . , p such that cj > 0 we set

(7.2) C+j (t) ∶= [ cj −∫ t

0
[f+x+

j
(s) − f+x−

j
(s)]ds ]

+

(t ∈ [0, T ]) ,
with f+x+

j

satisfying (5.31) (written with x+j instead of a) and f+x−
j

satisfying (5.35)

(written with x−j instead of b); observe that by (5.32) and (5.36) there holds

(7.3) f+x+
j
(s) − f+x−

j
(s) ≥ 0 for a.e. s ∈ (0, T ) .

Similarly, for every j = 1, . . . , p such that cj < 0 we set

(7.4) C−j (t) ∶= [ cj −∫ t

0
[f−x+

j
(s) − f−x−

j
(s)]ds ]

−

(t ∈ [0, T ]) ,
with f−

x+
j

satisfying (5.33) (written with x+j instead of a) and f−
x−
j

satisfying (5.37)

(written with x−j instead of b); observe that by (5.34) and (5.38) there holds

(7.5) f−x+
j
(s) − f−x−

j
(s) ≤ 0 for a.e. s ∈ (0, T ) .

Let t̄j ∶= sup{t ∈ [0, T ] ∣C±j (t) > 0} > 0 (j = 1, . . . , p). Then t̄j > 0 since C±j (0) =
±cj > 0. By (7.3) and (7.5) C±j is nonincreasing in (0, T ), whence C±j > 0 in [0, t̄j)
and, if t̄j < T , there holds C±j = 0 in [t̄j , T ]. Let τ1 ∶= min{t̄1, . . . , t̄p}, and define

u ∈ C([0, τ1]; M(R)) as follows:
(7.6a)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

in Q1,τ1 ur is the entropy solution of (D+) if c1 > 0, of (D−) if c1 < 0;
in Qj,τ1 (j = 2, . . . , p) ur is the entropy solution of (D+

+
) if min{cj−1, cj} > 0,

of (D−
−
) if max{cj−1, cj} < 0, of (D−+) if cj−1 > 0 > cj , of (D+−) if cj−1 < 0 < cj ;

in Qp+1,τ1 ur is the entropy solution of (D+) if cp > 0, of (D−) if cp < 0 .
(7.6b) us(⋅, t) ∶= r

∑
j=1

C+j (t)δx′j −
s

∑
j=1

C−j (t)δx′′j .

By Definitions 3.2 and 5.2-5.4 u is an entropy solution of (CL) in Qj,τ1 for j =
1, . . . , p + 1. Hence u is an entropy solution of (CL) in Sτ1 , if we prove (3.1)-(3.2)
with Ω = R, τ = τ1 for all ζ ∈ C1([0, τ1];C1

c (R)), ζ ≥ 0, ζ(⋅, τ1) = 0 in R, such that

supp ζ ∩ ({xj} × (0, τ1)) ≠ ∅ for some j = 1, . . . , p .
We only give the proof when ζ(x, t) = α(x)β(t) with α ∈ C1

c (R), α ≥ 0, α(xj) > 0
for a unique j ∈ {1, . . . , p}, and β ∈ C1([0, τ1]), β ≥ 0, β(τ1) = 0 (the general case
can be dealt with similarly). We also assume cj > 0, since the proof is similar for
cj < 0. Let us first prove (3.1) in this case, namely

∫
τ1

0
∫
Ij∪Ij+1

[urζt +H(ur) ζx]dxdt + ∫
Ij∪Ij+1

u0r(x)ζ(x,0)dx =(7.7)

−∫
τ

0
⟨us(⋅, t), ζt(⋅, t)⟩(xj−1,xj+1) dt − ⟨u0s, ζ(⋅,0)⟩(xj−1,xj+1)
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for all ζ as above. From (7.2) we obtain

∫
τ1

0
⟨us(⋅, t), ζt(⋅, t)⟩(xj−1,xj+1) dt + ⟨u0s, ζ(⋅,0)⟩(xj−1,xj+1) =(7.8)

= α(xj)(∫ τ1

0
β′(t)C+j (t)dt+cjβ(0))=α(xj)∫ τ1

0
[f+x+

j
(t)−f+x−

j
(t)]β(t)dt.

On the other hand, since u is a solution of (CL) in Qj+1,τ1 , by (3.1) there holds

∬
Qj+1,τ1

{(ur − k)ξt + [H(ur) −H(k)] ξx}dxdt = −∫
Ij+1

[u0r(x) − k] ξ(x,0)dx
for all k ∈ R and ξ ∈ C1([0, τ1];C1

c (Ij+1)), ξ(⋅, τ1) = 0 in Ij+1. Let ηq be defined by

ηq(x) = [2q(x − xj) − 1]χ[xj+
1

2q
,xj+

1

q
](x) + χ(xj+

1

q
,xj+1](x) ,

and let ζ ∈ C1([0, τ1];C1
c ([xj , xj+1))), ζ(⋅, τ1) = 0 in Ij+1 (here xj+1 = ∞ if j = p).

By standard arguments we can choose ξ = ζηq in the above equality. Then we get

∬
Qj+1,τ1

{(ur − k)ζtηq + [H(ur) −H(k)] ζxηq}dxdt+
+∫

Ij+1

[u0r(x) − k] ζ(x,0)ηq(x)dx = −2q∫ τ1

0
∫

xj+1/q

xj+1/2q
[H(ur) −H(k)] ζ dxdt .

Letting q →∞ in the above equality plainly gives (see (5.31) and (7.6a)):

∬
Qj+1,τ1

{(ur−k)ζt + [H(ur)−H(k)]ζx} dxdt+∫
Ij+1

[u0r(x)−k]ζ(x,0)dx =(7.9)

= − ess lim
x→x+

j

∫
τ1

0
[H(ur(x, t)) −H(k)] ζ(x, t)dt =

= −∫
τ1

0
[f+x+

j
(t) −H(k)] ζ(xj , t)dt .

Since u is an entropy solution of (CL) in Qj+1,τ1 , arguing as before we obtain

∬
Qj+1,τ1

{∣ur−k∣ζt+sgn (ur−k) [H(ur)−H(k)] ζx}dxdt +∫
Ij+1

∣u0r(x)−k∣ζ(x,0)dx≥
≥ − ess lim

x→x+
j

∫
τ1

0
sgn (ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt

for all ζ as above, ζ ≥ 0. Choosing ζ(x, t) = α(x)β(t) with α ∈ C1
c ([xj , xj+1)),

β ∈ C1([0, τ1]), α ≥ 0, β ≥ 0 and β(τ1) = 0, by (5.13a) from the above inequality we
obtain

∬
Qj+1,τ1

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt +(7.10)

+∫
Ij+1

∣u0r(x)−k∣ζ(x,0)dx + ess lim
x→x+

j

∫
τ1

0
[H(ur(x, t))−H(k)] ζ(x, t)dt ≥

≥ −2 ess lim
x→x+

j

∫
τ1

0
sgn −(ur(x, t) − k) [H(ur(x, t)) −H(k)] ζ(x, t)dt =

= −2α(xj)ess lim
x→x+

j

∫
τ1

0
sgn −(ur(x, t)−k) [H(ur(x, t))−H(k)]β(t)dt ≥ 0,

since sgn (u) = 1 + 2 sgn −(u).
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Replacing Qj+1,τ1 by Qj,τ1 we obtain, similarly to (7.9)-(7.10),

∬
Qj,τ1

{(ur − k)ζt + [H(ur) −H(k)] ζx}dxdt + ∫
Ij

[u0r(x) − k] ζ(x,0)dx =(7.11)

=ess lim
x→x−

j

∫
τ1

0
[H(ur(x, t))−H(k)]ζ(x, t)dt=∫ τ1

0
[f+x−

j
(t)−H(k)]ζ(xj , t)dt,

∬
Qj,τ1

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt +(7.12)

+∫
Ij

∣u0r(x)−k∣ζ(x,0)dx − ess lim
x→x−

j

∫
τ1

0
[H(ur(x, t))−H(k)] ζ(x, t)dt ≥ 0,

Summing (7.9) and (7.11) gives

∫
τ1

0
∫
Ij∪Ij+1

[urζt +H(ur) ζx]dxdt + ∫
Ij∪Ij+1

u0r(x)ζ(x,0)dx =(7.13)

= −α(xj)∫ τ1

0
[f+x+

j
(t) − f+x−

j
(t)]β(t)dt .

Then equality (7.7) follows from (7.8) and (7.13).
Next we prove (3.2) for all ζ as above, namely

∫
τ1

0
∫
Ij∪Ij+1

{∣ur − k∣ ζt + sgn (ur − k) [H(ur) −H(k)] ζx}dxdt +(7.14)

+∫
τ1

0
⟨∣us(⋅, t)∣, ζt(⋅, t)⟩(xj−1,xj+1) dt + ⟨∣u0s∣, ζ(⋅,0)⟩(xj−1,xj+1) ≥

≥ −∫
Ij∪Ij+1

∣u0r(x) − k∣ ζ(x,0)dx
Since u is an entropy solution of (CL) in Qj,τ1 and Qj+1,τ1 , from (5.31), (5.35),
(7.10) and (7.12) it follows that

∫
τ1

0
∫
Ij∪Ij+1

{∣ur − k∣ ζt + sgn(ur − k) [H(ur) −H(k)] ζx}dxdt +
+∫

Ij∪Ij+1

∣u0r(x) − k∣ ζ(x,0)dx ≥ −α(xj)∫ τ1

0
[f+x+

j
(t) − f+x−

j
(t)]β(t)dt .

Since ∣u0s∣ ⌞ (xj−1, xj+1) = u0s ⌞ (xj−1, xj+1) (recall that cj > 0 by assumption) and
by (7.6b) ∣us(⋅, t)∣ ⌞ (xj−1, xj+1) = us(⋅, t) ⌞ (xj−1, xj+1) for all t ∈ [0, T ], the above
inequality together with (7.8) implies (7.14). Therefore, the measure u defined by
(7.6) is an entropy solution of (CL) in Sτ1 .

If τ1 < T , either us(⋅, τ1) = 0, or us(⋅, τ1) ≠ 0. If us(⋅, τ1) = 0, there holds C±j (τ1) =
0 for all j = 1, . . . , p, thus us(⋅, t) = 0 for all t ∈ [τ1, T ]. Then, by the standard theory
of scalar conservation laws, we can continue the solution of (CL) in (τ1, T ] with
initial data ur(⋅, τ1). On the other hand, if us(⋅, τ1) ≠ 0, then C±j (τ1) ≠ 0 for some

j = 1, . . . , p and, arguing as before, we can continue the solution of (CL) in (τ1, τ2],
with initial data u(⋅, τ1), for some τ2 ∈ (τ1, T ]. Iterating the procedure q times with
2 ≤ q ≤ p, we obtain that either τq = T , or us(⋅, τq) = 0.

Let us now address uniqueness. Let u, v ∈ C([0, T ];M(R)) be entropy solutions
of (CL), and let τ ∶=min {tu, tv}, where

⎧⎪⎪⎨⎪⎪⎩
tu ∶= sup{t ∈ [0, T ) ∣ suppus(⋅, t) = suppu0s}
tv ∶= sup{t ∈ [0, T ) ∣ supp vs(⋅, t) = suppu0s} .
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Arguing as at the end of the existence proof, it is enough to show that u = v in
M(Sτ). We claim that this follows, if we prove that

(7.15) ur = vr a.e. in Sτ .

In fact, equalities (3.1) and (7.15) imply that, for all ζ ∈ C1([0, τ];C1
c (R)), ζ(⋅, τ) = 0

in R,

∫
τ

0
⟨us(⋅, t)−vs(⋅, t), ζt(⋅, t)⟩R dt=∬

Sτ

{(ur−vr) ζt + [H(ur)−H(ur)]ζx}dxdt = 0 .

Hence ⟨us(⋅, t) − vs(⋅, t), α⟩R = 0 for a.e. t ∈ (0, τ), for all α ∈ C1
c (R). Therefore

us = vs in L∞(0, τ ;M(R)), thus (7.15) implies u = v inM(Sτ).
It remains to prove (7.15), which is equivalent to showing that ur = vr a.e. in Qj,τ

for all j = 1, . . . , p + 1. However, this follows from the uniqueness results provided
by Theorem 5.2.. Then the result follows. ◻
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