In several applications, a performance criterion that is quartic in the state can be a desired alternative to the classic quadratic control. This letter proposes a receding horizon controller for linear time-invariant systems subject to linear state and input constraints, which makes use of a running cost that is quadratic in the input and quartic in the state. Stability and recursive feasibility of the proposed receding horizon scheme are proven. Numerical simulations are presented, considering the problem of controlling a single-link inverted pendulum on a cart.
Constrained Control of Linear Discrete-Time Systems under Quartic Performance Criterion / Liberati, F.; Garone, E.. - In: IEEE CONTROL SYSTEMS LETTERS. - ISSN 2475-1456. - 4:2(2020), pp. 301-306. [10.1109/LCSYS.2019.2924901]
Constrained Control of Linear Discrete-Time Systems under Quartic Performance Criterion
Liberati F.
;
2020
Abstract
In several applications, a performance criterion that is quartic in the state can be a desired alternative to the classic quadratic control. This letter proposes a receding horizon controller for linear time-invariant systems subject to linear state and input constraints, which makes use of a running cost that is quadratic in the input and quartic in the state. Stability and recursive feasibility of the proposed receding horizon scheme are proven. Numerical simulations are presented, considering the problem of controlling a single-link inverted pendulum on a cart.File | Dimensione | Formato | |
---|---|---|---|
Liberati_postprint_Constrained-Control_2020.pdf
accesso aperto
Note: DOI: 10.1109/LCSYS.2019.2924901
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
717.13 kB
Formato
Adobe PDF
|
717.13 kB | Adobe PDF | |
Liberati_Constrained-Control_2020.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
642.81 kB
Formato
Adobe PDF
|
642.81 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.