In this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.

Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems / Battilotti, S.; Cacace, F.; D'Angelo, M.; Germani, A.. - 53:2(2020), pp. 3242-3247. (Intervento presentato al convegno 20th IFAC World Congress tenutosi a Berlin; Germany) [10.1016/j.ifacol.2020.12.1124].

Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems

S. Battilotti
;
F. Cacace;M. d'Angelo;A. Germani
2020

Abstract

In this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.
2020
20th IFAC World Congress
Continuous time lters; Kalman lters; Filtering theory; Consensus lters
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems / Battilotti, S.; Cacace, F.; D'Angelo, M.; Germani, A.. - 53:2(2020), pp. 3242-3247. (Intervento presentato al convegno 20th IFAC World Congress tenutosi a Berlin; Germany) [10.1016/j.ifacol.2020.12.1124].
File allegati a questo prodotto
File Dimensione Formato  
Battilotti_Asymptotic_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 461.56 kB
Formato Adobe PDF
461.56 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1392270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact