In this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.
Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems / Battilotti, S.; Cacace, F.; D'Angelo, M.; Germani, A.. - 53:2(2020), pp. 3242-3247. (Intervento presentato al convegno 20th IFAC World Congress tenutosi a Berlin; Germany) [10.1016/j.ifacol.2020.12.1124].
Asymptotically Optimal Distributed Filtering of Continuous-Time Linear Systems
S. Battilotti
;F. Cacace;M. d'Angelo;A. Germani
2020
Abstract
In this paper we prove the following new and unexpected result: it is possible to design a continuous-time distributed filter for linear systems that asymptotically tends at each node to the optimal centralized filter. The result concerns distributed estimation over a connected undirected graph and it only requires to exchange the estimates among adjacent nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show that when the parameter becomes arbitrarily large the error covariance at each node becomes arbitrarily close to the error covariance of the optimal centralized Kalman filter.File | Dimensione | Formato | |
---|---|---|---|
Battilotti_Asymptotic_2020.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
461.56 kB
Formato
Adobe PDF
|
461.56 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.