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Abstract: In this paper we prove the following new and unexpected result: it is possible
to design a continuous-time distributed filter for linear systems that asymptotically tends at
each node to the optimal centralized filter. The result concerns distributed estimation over a
connected undirected graph and it only requires to exchange the estimates among adjacent
nodes. We exhibit an algorithm containing a consensus term with a parametrized gain and show
that when the parameter becomes arbitrarily large the error covariance at each node becomes
arbitrarily close to the error covariance of the optimal centralized Kalman filter.
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1. INTRODUCTION

Distributed filtering involves state estimation using a set of
local filters that communicate with all other nodes through
a communication network that constraints the information
exchange to the neighbors in the network. In the last years
distributed filtering techniques are becoming increasingly
popular in the sensor network community due to their
scalability for large networks and high fault tolerance and
spurred a great amount of research to investigate their
design and performance. They are particularly relevant in
the context of cooperative multi-agent systems, a frame-
work that is attracting a great deal of attention (see Lewis
et al. (2013); Qu (2009) for comprehensive treatments).
Surveys of distributed state estimation approaches and
comparison with centralized and decentralized methods
can be found in Chong (2017); Olfati-Saber et al. (2007);
Taj and Cavallaro (2011). The most relevant issues for
distributed estimation techniques include: (i) accuracy,
i.e., reducing the estimation error at each node; (ii) con-
sensus, i.e. convergence of estimates across nodes that is
essential for cooperation of multi-agent systems; (iii) com-
munication, i.e. reducing the amount of communication
burden among nodes; (iv) observability, i.e. the capability
of dealing with sensors with limited or null system mea-
surements (Kamal et al., 2013). It is generally assumed
the existence of trade-offs among these features, whose
relative relevance may also vary in different application
areas. For example, strong consensus may be obtained
at the expenses of estimation accuracy at some nodes
(Battistelli et al., 2014), and increased accuracy might
require more intensive communication across nodes. It is
moreover tacitly assumed that the accuracy of distributed

schemes is always worse than accuracy of a centralized
optimal algorithm that uses all the available information
at the same time.

From a theoretical perspective the results presented in
this work show that, at least for the relevant case of
continuous-time systems and undirected network topology,
these trade-offs and tacit assumption are apparent. We
exhibit an algorithm that attains perfect consensus and
optimal accuracy with least communication burden and
requires only collective observability (i.e. the system must
be observable from the union of the sensor nodes in the
network). From a more practical perspective the proposed
algorithm extends the consensus distributed DKF algo-
rithm proposed Olfati-Saber et al. (2007) to the case of
networks with nodes that have limited or null measure-
ment capabilities and provide a more accurate estimate.
Our filter, named Asymptotic Distributed Kalman Filter
(ADKF) is introduced in Section 4 after formally describ-
ing the framework in Section 2 and the centralized optimal
approach in Section 3. The proof of the asymptotic opti-
mality of ADKF is derived in Section 5. Finally, in Section
6 and Section 7 we compare, from the theoretical and
numerical perspective, the proposed algorithm with the
centralized solution and other 3 recent approaches, namely
the already mentioned DKF of Olfati-Saber et al. (2007),
the Multi-Agent Consensus Filter of Ren et al. (2005);
Ji et al. (2017), and the distributed information-weighted
Kalman consensus filter (IKCF) of Ji et al. (2017).

Notation. R and C denote real and complex numbers.
For a square matrix A, trpAq is the trace and σpAq is the
spectrum. A is said to be Hurwitz stable if σpAq Ă C´,
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be observable from the union of the sensor nodes in the
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approach in Section 3. The proof of the asymptotic opti-
mality of ADKF is derived in Section 5. Finally, in Section
6 and Section 7 we compare, from the theoretical and
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Notation. R and C denote real and complex numbers.
For a square matrix A, trpAq is the trace and σpAq is the
spectrum. A is said to be Hurwitz stable if σpAq Ă C´,

the set of complex numbers with negative real part. Et¨u
denotes expectation. b is the Kronecker product between
vectors or matrices. The operators rowipq, colipq, diagipq
denote respectively the horizontal, vertical and diagonal
compositions of matrices and vectors indexed by i. Let
Spnq P Rnˆn be the set of symmetric matrices of size n.
Ppnq (resp., P`pnq) Ă Spnq denotes the set of positive
semi-definite (definite) matrices in Spnq. We denote In
the identity matrix of size n and by Un “ 1n1

J
n , 1n “

colni“1p1q, the square matrix of size n having 1 in each
entry.

2. SYSTEM AND PROBLEM FORMULATION

We use a graph G “ pV, Eq to describe the information
exchange between the N nodes, where V “ t1, 2 . . . , Nu is
the set of vertices representing the N agents and E Ď VˆV
is the set of edges of the graph. An edge of G is denoted
by pi, jq, representing that nodes i and j can exchange
information between them. The graph is undirected, that
is, the edges pi, jq and pj, iq P E are considered to be the
same. Two nodes i and j are neighbors to each other if
pi, jq P E . The set of neighbors of node i is denoted by
N piq :“ tj P V : pj, iq P E , j ‰ iu. A path is a sequence of
connected edges in a graph. A graph is connected if there
is a path between every pair of vertices. The adjacency
matrix A of a graph G is an N ˆ N matrix, whose pi, jq-
th entry is 1 if pi, jq is an edge of G and 0 otherwise.
The degree matrix D of G is a diagonal matrix whose i-
th diagonal element is equal to the cardinality of Ni. The
Laplacian of G is defined to be a N ˆN matrix L such that
L “ ´A ` D. L is symmetric if and only if the graph is
undirected. Moreover, 0 “ λ1pLq ă λ2pLq ď ¨ ¨ ¨ ď λN pLq,
where λipLq denotes an eigenvalue of L, if and only if the
graph is connected. An eigenvector associated to λ1pLq is
1N .

Consider the process

9xt “Axt ` ft, (1)

y
piq
t “Cixt ` g

piq
t , i “ 1, . . . , N, (2)

where xt P Rn, y
piq
t P Rqi , qi ě 0, and ft and g

piq
t , i “

1, . . . , N , are zero-mean white Gaussian noises, mutually
independent with covariance respectively Q P P`pnq, Ri P
P`pqiq i “ 1, . . . , N . The matrices Q and R “ diagipRiq
are nonsingular. Also x0 is random with mean sx0 :“ Etx0u
and covariance Σx0

:“ Etpx0 ´ sx0qpx0 ´ sx0qJu.
If C “ colipCiq we assume that pC,Aq is observable. Also,

we use the notation yt “ colipypiq
t q. Each y

piq
t represents

the data available at node i, i “ 1, . . . , N , in the network.

We will design an optimal distributed state estimator for
the system (1) with the given topology of the network
G. The distributed estimator will consists of N local
estimators, one for each node, which exchange their local
estimate with the neighbors.

3. THE CENTRALIZED KALMAN-BUCY OPTIMAL
FILTER (CKBF)

The equations of the centralized Kalman-Bucy optimal
filter (CKBF) for (1) are

9
pxt “Apxt ` Ktpyt ´ Cpxtq,
px0 “sx0,

9Pt “APt ` PtA
J ` Q ´ PtC

JR´1CPt,

P0 “Σx0
, (3)

with Kt “ PtC
JR´1. The matrix Pt represents the

covariance of the estimation error Etpxt ´ pxtqpxt ´ pxtqJu.
We have Pt P P`pnq, bounded for all t ě 0 and Pt Ñ P8
as t Ñ `8 with P8 P P`pnq the unique solution of

0 “ AP8 ` P8AJ ` Q ´ P8CJR´1CP8. (4)

This Riccati equation can be also written as

0 “ ACP8 ` P8AJ
C ` Q ` P8CJR´1CP8 (5)

where

AC :“ A ´ K8C. (6)

From (3) we also obtain the asymptotically optimal CBKF
(ACKBF)

9
pxss,t “ Apxss,t ` K8pyt ´ Cpxss,tq, (7)

with

K8 “ P8CJR´1. (8)

4. THE ASYMPTOTICALLY OPTIMAL
DISTRIBUTED KALMAN FILTER (ADKF)

Our distributed Kalman filter (ADKF) consists of one
filter for each sensor node of the network. The equations
for the ADKF at the i-th sensor node are:

9
px

piq
t “Apx

piq
t ` Kipypiq

t ´ Cipx
piq
t q

` γP8
ÿ

jPN piq

ppx
pjq
t ´ px

piq
t q, (9)

with Ki “ NP8Ci
JRi

´1 and γ ą 0 a parameter to be
tuned as pointed out in the following proposition. Define

Ai :“ A ´ KiCi, i “ 1, . . . , N, (10)

and

ADpγq :“ diagipAiq ´ γpL b P8q. (11)

Notice that ADpγq P RnNˆnN .

Proposition 1. There exists γ0 ą 0 such that for all γ ą γ0
ADpγq is Hurwitz stable.

Proof. We prove that there exists a positive definite
symmetric matrix X8 P P`pnNq and γ0 ą 0 such that
for all γ ą γ0

X8ADpγq ` AJ
DpγqX8 ă 0. (12)

If X8 :“ IN b P´1
8 we have

X8ADpγq ` AJ
DpγqX8 “ diagipWiq ´ 2γpL b Inq (13)

where Wi :“ P´1
8 Ai ` AJ

i P
´1
8 . Since

v P RnNzt0u : vJpL b Inqv “ 0

ñ v “ 1N b sv, sv P Rnzt0u, (14)

it follows that

v P RnNzt0u : vJpL b Inqv “ 0

ñ vJdiagipWiqv “ NsvJpP´1
8 AC ` AJ

CP
´1
8 qsv ă 0.

By Finsler’s lemma there exists γ0 ą 0 such that, for all
γ ą γ0, diagipWiq ´ 2γpL b Inq ă 0, which proves (12). l
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5. PROPERTIES OF THE ADKF

In order to study the asymptotic properties of the ADKF
we introduce the local (at the node) estimation error

e
piq
t :“ xt ´ px

piq
t , the total estimation error et :“ colipepiq

t q,
the total measurement noise vector gt :“ colipgpiq

t q P
R

řn
i“1 qi , the noise vector ht :“ colipft ´ Kig

piq
t q with

covariance Ψh :“ Ethth
J
t u, and the estimation error

covariance matrix Xt :“ EteteJ
t u. Clearly, Xt depends on

γ, but we omit this dependence for notational simplicity.
We have

9et “ADpγqet ` ht (15)

Ψh “UN b Q ` diagipKiqR diagipKJ
i q, (16)

where UN is a matrix with all entries 1 (see notation). No-
tice that the estimates pxpiq are (asymptotically) unbiased
since ADpγq is Hurwitz stable (for γ ą γ0).

Proposition 2. For all γ ą γ0 the estimation error covari-
ance matrix Xt is uniformly bounded in time.

Proof. The result follows form standard arguments from
the fact that ADpγq is Hurwitz for γ ą γ0 and Ψh is
constant. The covariance Xt obeys for all t ě 0

9Xt “ ADpγqXt ` XtA
J
Dpγq ` Ψh (17)

and its asymptotic value is solution of

ADpγqX8 ` X8AJ
Dpγq “ ´Ψh. (18)

l

Our purpose is to show the key result that X8 Ñ UN bP8
when γ Ñ 8 (recall that P8 is the asymptotic error
covariance of the CKBF). The matrix XC

8 :“ UN b P8
is the asymptotic error covariance for N identical CBKFs
implemented at each node and using the whole output yt.
Recalling that pL b P8qXC

8 “ pL b P8qpUN b P8q “ 0,
we obtain that XC

8 satisfies

0 “
´

diagNi“1pACq ´ γpL b P8q
¯

XC
8

` XC
8

´

diagNi“1pACq ´ γpL b P8q
¯J

` UN b Q

` diagNi“1pK8qpUN b RqdiagNi“1pKJ
8q. (19)

LetGi :“ CJ
i R

´1
i Ci,Gd :“ diagipGiq, andG :“ CJR´1C.

Notice that

G “
N
ÿ

i“1

Gi. (20)

By introducing the covariance mismatch Et :“ Xt ´ XC
8

we obtain after some manipulations

9Et “ ADpγqEt ` EtA
J
Dpγq ` Σ, (21)

where

Σ :“ N2pIN b P8qGdpIN b P8q ` UN b pP8GP8q
´NpIN b P8qGdpUN b P8q ´ NpUN b P8qGdpIN b P8q.
Our main result can thus be stated as follows.

Proposition 3. limγÑ`8 limtÑ`8 Xt “ XC
8 :“ UN b P8.

In order to prove the above proposition, we notice that
it is always possible to construct a transformation T such
that

T “
ˆ

1J
N?
N

tJ
2 ¨ ¨ ¨ tJ

N

˙J

, TLTT “ diagt0, λ2, . . . , λNu

where λ2, . . . , λn ą 0 are the positive eigenvalues of L (see
Section 2) and

ti1N “
N
ÿ

j“1

ti,j “ 0, tit
J
j “ δi,j , i, j “ 2, . . . , N,

i.e. T is orthornormal. Define

S :“ T b In (22)

and let rEt :“ SEtS
J. We have after some manipulations

and taking into account (20)

9
rEt “ rADpγqrEt ` rEt

rAJ
Dpγq ` N2

rΣ (23)

where

rADpγq “

¨

˚

˚

˝

AC Π1,2 ¨ ¨ ¨ Π1,N

Π2,1 Π2,2 ´ γλ2P8 ¨ ¨ ¨ Π2,N

...
...

. . .
...

ΠN,1 ΠN,2 ¨ ¨ ¨ ΠN,N ´ γλNP8

˛

‹

‹

‚

(24)

Π1,j “Πj,1 :“ ´
?
N

N
ÿ

l“1

tj,lP8Gl, j “ 2, . . . , N, (25)

Πi,j “Πj,i :“ δi,jA ´ N
N
ÿ

l“1

ti,ltj,lP8Gl, i, j “ 2, . . . , N,

(26)

and

rΣ “

¨

˚

˚

˚

˝

0 0 ¨ ¨ ¨ 0

0 rΣ2,2 ¨ ¨ ¨ rΣ2,N

...
...

. . .
...

0 rΣN,2 ¨ ¨ ¨ rΣN,N

˛

‹

‹

‹

‚

(27)

rΣi,j “rΣj,i :“
N
ÿ

l“1

ti,ltj,lP8GlP8. (28)

The matrix rADpγq is Hurwitz for all γ ą γ0 (since ADpγq
is Hurwitz for all γ ą γ0 by Proposition 1). Notice also

that since σp rADpγqq X σp´ rAJ
Dpγqq “ H for all γ ą γ0,

for each γ ą γ0 there exists a unique symmetric solution
rE8pγq to

0 “ rADpγqrE8pγq ` rE8pγq rAJ
Dpγq ` N2

rΣ (29)

The proof of Proposition 3 follows directly from the next
two lemmas.

Lemma 1. For each γ ą γ0

lim
tÑ`8

rEt “ rE8pγq (30)

Proof. Let ∆t :“ rEt ´ rE8pγq. Since rApγq is Hurwitz for
all γ ě γ0,

∆t “ e
rADpγqt∆0e

rAJ
Dpγqt Ñ 0 (31)

as t Ñ `8. l
Lemma 2. limγÑ`8 rE8pγq “ 0.

Proof. The solution rE8pγq of (29) is unique and it can be
parametrized in γ as follows. Let

W1 :“ rowN
i“2Π1i W2 :“ colNi“2Π1i (32)

W0 :“

¨

˚

˝

Π2,2 ¨ ¨ ¨ Π2,N

...
. . .

...
ΠN,2 ¨ ¨ ¨ ΠN,N

˛

‹

‚

, Λ :“

¨

˚

˝

rΣ2,2 ¨ ¨ ¨ rΣ2,N

...
. . .

...
rΣN,2 ¨ ¨ ¨ rΣN,N

˛

‹

‚

.

(33)

With this definitions the equation (29) reads out as
ˆ

0 0
0 Λ

˙

“
ˆ

AC W1

W2 W0 ´ γD b P8

˙

rE8pγq

` rE8pγq
ˆ

AC W1

W2 W0 ´ γD b P8

˙J
. (34)

D “diagNi“2pλiq (35)

The solution rE8pγq is analytic in γ ą 0 and can be written
(using a Taylor expansion) as

rE8pγq “ 1

γ

¨

˚

˚

˝

Y1,1 ` O

ˆ

1

γ2

˙

1

γ
Y2,1 ` O

ˆ

1

γ2

˙

1

γ
Y J
2,1 ` O

ˆ

1

γ2

˙

Y3,1 ` 1

γ
Y3,2 ` O

ˆ

1

γ2

˙

˛

‹

‹

‚

(36)

where Y3,1 is the unique (since σpD b P8q X σp´D b
P8q “ H) solution of

Y3,1pD b P8q ` pD b P8qY3,1 “ N2Λ,

Y3,2 is the unique (since σpD b P8q X σp´D b P8q “ H)
solution of

pD b P8qY3,2 ` Y3,2pD b P8q “ W0Y3,1 ` Y3,1W
J
0 ,

Y2,1 is defined as

Y2,1 :“ W1Y3,1pD b P8q´1

and Y1,1 is the unique (since σpACq X σp´AJ
Cq “ H)

solution of

ACY1,1 ` Y1,1A
J
C “ ´pW1Y

J
2,1 ` Y2,1W

J
1 q.

From (36) it follows that limγÑ`8 rE8pγq “ 0. l

Clearly, from the above lemmas we conclude that

lim
γÑ`8

lim
tÑ`8

rEt “ lim
γÑ`8

lim
tÑ`8

Et “ 0 (37)

which proves Proposition 3.

An important consequence of proposition 3 is that the
error covariance of each filter at the sensor node tends
(as γ Ñ `8 and t Ñ `8) to the optimal steady state
error covariance P8 of the centralized filter.

Corollary 1.

lim
γÑ`8

lim
tÑ`8

rXtsj,j “ P8 (38)

for each j “ 1, . . . , N .

Remark 1. It is worth remarking that in any discrete-time
implementation of the ADKF the value of γ cannot be
chosen arbitrarily large, due to numerical issues. Roughly
speaking, a larger γ requires a smaller integration step
that constraints the communication lag among nodes.
Consequently, any implementable version of the ADKF
will suffer a certain performance degradation with respect
to the CKBF, in accordance with what happens in the
discrete time framework.

Remark 2. The ADKF is extremely simple to implement
and the information exchange among nodes is reduced
to a minimum. The matrix P8 can be computed (off-
line) by solving (4), a matrix equation with size n that
does not depend on the graph structure. Clearly, with
many sensor nodes the size of C and R can be large, but
CJR´1C is a n ˆ n matrix. The nodes can easily solve
(4) provided that the value of G “ CJR´1C is available.
When measurement noises are independent G is expressed

as in (20), that is, the sum of the matrices CJ
i R

´1
i Ci

all over the graph. A distributed computation of G can
thus be achieved by resorting to distributed algorithms to
compute aggregate functions over graphs (Kempe et al.
(2003)).

We want to add that also the calculation of the lower
bound γ0 for γ can be implemented in a distributed way.
Indeed, it is possible to show that γ0 can be lower bounded
by some quantity which depend on G and P8 and, as
noticed above, these quantities can be obtained through
a distributed computation.

6. COMPARISON WITH RELATED APPROACHES

In this section we review some recent proposals of dis-
tributed filters for the continuous-time case, in order to
highlight the similarities with the ADKF and the respec-
tive application scenarios.

We have reported the results about the stability of the
errors of these algorithms. It is worth mentioning that none
of them provides the exact variance of the estimation error
at each node, an information that in the case of the ADKF
is readily available by computing trprX8si,iq.

6.1 DKF

The following continuous-time distributed filter was pro-
posed in Olfati-Saber (2007). It modifies a previous pro-
posal of a consensus filter of the same author (Olfati-
Saber, 2005) with the aim of enhancing consensus. The
DKF algorithm needs to exchange only the estimates
among adjacent nodes and has equation

9
px

piq
t “Apx

piq
t ` Ki

´

ypiq ´ Cipx
piq
t

¯

` γPi

ÿ

jPN piq

´

px
piq
t ´ px

piq
t

¯

(39)

9Pi “APi ` PiA
J ` Q ´ PiC

J
i R

´1
i CiPi (40)

Ki “PiC
J
i R

´1
i , (41)

with γ a positive parameter. The DKF algorithm Notice
the similarity with (9). The only difference is that P8
is replaced by Pi. Clearly, Pi is bounded when pCi, Aq
is an observable pair. A slight extension is to apply
the algorithm by replacing ypiq with coljPN piq pypjqq and
Ci with coljPN piq pCjq. In any case, the DKF can be
applied only when local observability conditions hold,
and in particular Ci ‰ 0, that is, all the sensor nodes
(or their immediate neighbors) have measurements. In
this condition it is possible to obtain a result about the
boundedness of the estimation error variance.

6.2 MKCF

The Multi-agent Consensus Filter (MKCF) was originally
proposed in Ren et al. (2005) for systems without dynam-
ical equations. Its extension to our context was carried
out in Ji et al. (2017). Here it is assumed that only the
nodes for which gi “ 1 have access to the system output
and in this case Ci “ I. In other words, the measurement
equation is

ypiqptq “ gizi “ gipx ` viq. (42)
The other nodes (i.e., those with gi “ 0) must rely on the
estimates of the neighbors as it is commonly assumed for
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With this definitions the equation (29) reads out as
ˆ

0 0
0 Λ

˙

“
ˆ

AC W1

W2 W0 ´ γD b P8

˙

rE8pγq

` rE8pγq
ˆ

AC W1

W2 W0 ´ γD b P8

˙J
. (34)

D “diagNi“2pλiq (35)

The solution rE8pγq is analytic in γ ą 0 and can be written
(using a Taylor expansion) as

rE8pγq “ 1

γ

¨

˚

˚

˝

Y1,1 ` O

ˆ

1

γ2

˙

1

γ
Y2,1 ` O

ˆ

1

γ2

˙

1

γ
Y J
2,1 ` O

ˆ

1

γ2

˙

Y3,1 ` 1

γ
Y3,2 ` O

ˆ

1

γ2

˙

˛

‹

‹

‚

(36)

where Y3,1 is the unique (since σpD b P8q X σp´D b
P8q “ H) solution of

Y3,1pD b P8q ` pD b P8qY3,1 “ N2Λ,

Y3,2 is the unique (since σpD b P8q X σp´D b P8q “ H)
solution of

pD b P8qY3,2 ` Y3,2pD b P8q “ W0Y3,1 ` Y3,1W
J
0 ,

Y2,1 is defined as

Y2,1 :“ W1Y3,1pD b P8q´1

and Y1,1 is the unique (since σpACq X σp´AJ
Cq “ H)

solution of

ACY1,1 ` Y1,1A
J
C “ ´pW1Y

J
2,1 ` Y2,1W

J
1 q.

From (36) it follows that limγÑ`8 rE8pγq “ 0. l

Clearly, from the above lemmas we conclude that

lim
γÑ`8

lim
tÑ`8

rEt “ lim
γÑ`8

lim
tÑ`8

Et “ 0 (37)

which proves Proposition 3.

An important consequence of proposition 3 is that the
error covariance of each filter at the sensor node tends
(as γ Ñ `8 and t Ñ `8) to the optimal steady state
error covariance P8 of the centralized filter.

Corollary 1.

lim
γÑ`8

lim
tÑ`8

rXtsj,j “ P8 (38)

for each j “ 1, . . . , N .

Remark 1. It is worth remarking that in any discrete-time
implementation of the ADKF the value of γ cannot be
chosen arbitrarily large, due to numerical issues. Roughly
speaking, a larger γ requires a smaller integration step
that constraints the communication lag among nodes.
Consequently, any implementable version of the ADKF
will suffer a certain performance degradation with respect
to the CKBF, in accordance with what happens in the
discrete time framework.

Remark 2. The ADKF is extremely simple to implement
and the information exchange among nodes is reduced
to a minimum. The matrix P8 can be computed (off-
line) by solving (4), a matrix equation with size n that
does not depend on the graph structure. Clearly, with
many sensor nodes the size of C and R can be large, but
CJR´1C is a n ˆ n matrix. The nodes can easily solve
(4) provided that the value of G “ CJR´1C is available.
When measurement noises are independent G is expressed

as in (20), that is, the sum of the matrices CJ
i R

´1
i Ci

all over the graph. A distributed computation of G can
thus be achieved by resorting to distributed algorithms to
compute aggregate functions over graphs (Kempe et al.
(2003)).

We want to add that also the calculation of the lower
bound γ0 for γ can be implemented in a distributed way.
Indeed, it is possible to show that γ0 can be lower bounded
by some quantity which depend on G and P8 and, as
noticed above, these quantities can be obtained through
a distributed computation.

6. COMPARISON WITH RELATED APPROACHES

In this section we review some recent proposals of dis-
tributed filters for the continuous-time case, in order to
highlight the similarities with the ADKF and the respec-
tive application scenarios.

We have reported the results about the stability of the
errors of these algorithms. It is worth mentioning that none
of them provides the exact variance of the estimation error
at each node, an information that in the case of the ADKF
is readily available by computing trprX8si,iq.

6.1 DKF

The following continuous-time distributed filter was pro-
posed in Olfati-Saber (2007). It modifies a previous pro-
posal of a consensus filter of the same author (Olfati-
Saber, 2005) with the aim of enhancing consensus. The
DKF algorithm needs to exchange only the estimates
among adjacent nodes and has equation

9
px

piq
t “Apx

piq
t ` Ki

´

ypiq ´ Cipx
piq
t

¯

` γPi

ÿ

jPN piq

´

px
piq
t ´ px

piq
t

¯

(39)

9Pi “APi ` PiA
J ` Q ´ PiC

J
i R

´1
i CiPi (40)

Ki “PiC
J
i R

´1
i , (41)

with γ a positive parameter. The DKF algorithm Notice
the similarity with (9). The only difference is that P8
is replaced by Pi. Clearly, Pi is bounded when pCi, Aq
is an observable pair. A slight extension is to apply
the algorithm by replacing ypiq with coljPN piq pypjqq and
Ci with coljPN piq pCjq. In any case, the DKF can be
applied only when local observability conditions hold,
and in particular Ci ‰ 0, that is, all the sensor nodes
(or their immediate neighbors) have measurements. In
this condition it is possible to obtain a result about the
boundedness of the estimation error variance.

6.2 MKCF

The Multi-agent Consensus Filter (MKCF) was originally
proposed in Ren et al. (2005) for systems without dynam-
ical equations. Its extension to our context was carried
out in Ji et al. (2017). Here it is assumed that only the
nodes for which gi “ 1 have access to the system output
and in this case Ci “ I. In other words, the measurement
equation is

ypiqptq “ gizi “ gipx ` viq. (42)
The other nodes (i.e., those with gi “ 0) must rely on the
estimates of the neighbors as it is commonly assumed for
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wireless sensor networks. The MKCF algorithm needs to
exchange both the estimates and the matrices Pi among
adjacent nodes and its equations are

9
px

piq
t “Apx

piq
t ` giPiR

´1
i pzi ´ px

piq
t q

` Pi

ÿ

jPN piq

P´1
j

´

px
pjq
t ´ px

piq
t

¯

(43)

9Pi “APi ` PiA
J ` Q ´ Pi

¨

˝

ÿ

jPN piq

P´1
j ` giR

´1
i

˛

‚Pi.

(44)

There are no theoretical stability results for the estimation
error of the MKCF. MKCF can applied to a wider sets
of network with respect to DKF but it is limited by the
assumption Ci “ I.

6.3 IKCF

The information-wieghted Kalman consensus filter (IKCF)
was proposed in Ji et al. (2017) as a modification of the
MKCF, with which it shares the same assumptions except
for the fact that nodes have a partial access to the state,
i.e. Ci ‰ I. The measurement equation is

ypiqptq “ gizi “ gipCix ` viq. (45)

In addition, IKCF explicitly models communication noises
among nodes over directed graphs. The IKCF algorithm
needs to exchange both the estimates and the matrices Pi

among adjacent nodes and, for the case without commu-
nication noises, its equations are

9
px

piq
t “Apx

piq
t ` giPiC

J
i R

´1
i pzi ´ Cipx

piqq

` Pi

ÿ

jPN piq

P´1
j

´

px
pjq
t ´ px

piq
t

¯

(46)

9Pi “pA ` νiIqPi ` PipA ` νiIqJ ` Q ´ g2i PiC
J
i R

´1
i CiPi

´ Pi

¨

˝

ÿ

jPN piq

`

P´1
j ´ P´1

i

˘

˛

‚Pi. (47)

The proof of the boundedness of the estimation error
provided in Ji et al. (2017) contains some technical issues,
related to the fact that the Pis do not actually correspond
to the covariance of the estimation error at each node.
Thus, the claim in Ji et al. (2017) that the IKCF provides
an optimal estimate is not correct (Cacace, 2019).

7. SIMULATION RESULTS

Consider system (1) with

A “

»

—

–

´0.1 0 0 0
0.5 ´0.5 0 0
1.5 0 ´0.2 0
´1 0 1 0

fi

ffi

fl

(48)

We consider several scenarios that range from full state
measurement for each node to sparse partial measurement
(the latter case is typical of wireless sensor networks). We
choose N “ 5 with the five nodes connected in a chain,
i.e. the edges are pi, i ` 1q, i P t1, 2, 3, 4u.
Scenario 1: complete information. The system state is
available to all nodes, i.e. Ci “ I4.

Scenario 2: local observability. The system output is
available to all nodes and Ci “ r1, 1, 1, 1s. Note that
pCi, Aq is observable.

Scenario 3: collective observability. The system output
is available to all nodes, with C1 “ r1, 0, 1, 0s,
C2 “ r0, 1, 0, 0s, C3 “ r1, 0, 0, 0s, C4 “ r1, 0, 1, 1s,
C5 “ r0, 1, 1, 0s. Note that pCi, Aq is never observable,
but pC,Aq is observable.
Scenario 4: sparse state availability. The system state is
available only to nodes in t1, 5u, i.e. C1 “ C5 “ I4,
C2 “ C3 “ C4 “ 0.
Scenario 5: sparse measurement availability. The system
output is available only to nodes in t1, 5u, with

C1 “
„

1 0 1 0
0 1 0 0



, C5 “
„

1 0 1 1
0 1 1 0



, (49)

C2 “ C3 “ C4 “ 0. Note that pC1, Aq is not observable
but pC2, Aq is observable.

In order to compare the performance of the filters we have
performed 100 simulations with t P r0, 50s and integration
step dt “ 2 ¨ 10´3. The noise amplitude of the state noise
has been chosen as Q “ qfI4 with qf “ 0.3 and Ri “ rfIi,
where rf “ 0.6 and Ii has the same number of rows as Ci.
For ADKF and DKF the parameter γ was set to γ “ 100.

The results are summarized in Table 1. Notice that when
it can be applied, the DKF attains almost optimal per-
formance and a larger consensus than ADKF. This fact
however may depend on the value of γ. To investigate this
issue we have computed the variance of the estimation
error trprX8si,iq at each node as a function of γ in Scenario
3 by using (18). The results are shown in Fig. 1 (left). The
plot confirms the result of Proposition 3: when γ increases
the variance of the estimation error of all the nodes con-
verge to the optimal value trpP8q. Fig. 1 (right) shows
that the consensus, expressed as the standard deviation
across nodes of the variance of the estimation error, is a
linear function of γ.

Remark 3. DKF can be used only when local observability
conditions hold, i.e., in scenarios 1 and 2. This is clear
from the equation (40) for P that may become unstable
when pCi, Aq is not as observable pair. However, when
there are no measurements at nodes in which pCi, Aq is
not observable, the value Ki is not needed. The filter
can therefore be implemented by omitting the (potentially
unstable) computation of Pi and replacing Pi in (39) with
an arbitrary matrix, for example I. This is the approach
that we have used in scenario 4. Clearly, this is not possible
in scenario 3 where the gain Ki is needed.

Remark 4. MKCF needs Ci “ I, thus it can be natively
used in scenarios 1 and 4 because Pi and Ri must have the
same size (see (44). However, when Ri is scalar the terms
are still congruent, thus we used MKCF also for scenarios
2, 3.

8. CONCLUSIONS

As mentioned in Remark 1 the results described in this
work for the case of continuous-time filters do not extend
automatically to the discrete-time case. Thus it is of inter-
est to derive a discrete-time implementation of the ADKF
and to characterize the loss of accuracy and consensus of
this discrete-time counterpart with respect to the opti-
mal case as a function of the size of the discretization

trpP8q CKBF ADKF DKF MKCF IKCF

Scenario 1 mse 0.319 0.344 0.394 0.408 7.374 1.544
st.dev. 0.031 0.004 0.411 0.155

Scenario 2 mse 0.797 0.868 0.814 0.820 2.539 ą 103

st.dev. 0.015 0.003 0.078 ą 103

Scenario 3 mse 0.553 0.595 0.608 N.A. 17.207 2.818
st.dev. 0.029 N.A. 3.632 0.703

Scenario 4 mse 0.532 0.570 0.610 0.727 ą 102 1.406
st.dev. 0.064 ă 10´3 ą 10 0.481

Scenario 5 mse 0.582 0.626 0.672 N.A. N.A. 2.519
st.dev. 0.050 N.A. N.A. 0.519

Table 1. Comparison of mse and consensus among filters in five different scenarios. Consensus
is measured by the mse standard deviation across nodes (smaller values are better).
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Fig. 1. trprX8si,iq for the nodes of Scenario 3, i P t1, 2, 3, 4, 5u, compared with the optimal variance trpP8q as a function
of γ (left). Standard deviation across nodes of the estimation error variances shows that consensus increases with
γ (right).

interval. Additional extensions may include connectivity
hypotheses for the case of directed network topology and
the explicit modeling of communications delay and/or
disturbances.
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