We study the matching problem in the incremental setting, where we are given a sequence of edge insertions and aim at maintaining a near-maximum cardinality matching of the graph with small update time. We present a deterministic algorithm that, for any constant ε > 0, maintains a (1 + ε)-approximate matching with constant amortized update time per insertion.

(1 + ε)-approximate incremental matching in constant deterministic amortized time / Grandoni, F.; Leonardi, S.; Sankowski, P.; Schwiegelshohn, C.; Solomon, S.. - (2019), pp. 1886-1898. (Intervento presentato al convegno 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019 tenutosi a San Diego; United States).

(1 + ε)-approximate incremental matching in constant deterministic amortized time

Grandoni F.;Leonardi S.;Sankowski P.;Schwiegelshohn C.
;
2019

Abstract

We study the matching problem in the incremental setting, where we are given a sequence of edge insertions and aim at maintaining a near-maximum cardinality matching of the graph with small update time. We present a deterministic algorithm that, for any constant ε > 0, maintains a (1 + ε)-approximate matching with constant amortized update time per insertion.
2019
30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019
Amortized time; Approximate matching; Cardinality matching; Deterministic algorithms; Matching problems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
(1 + ε)-approximate incremental matching in constant deterministic amortized time / Grandoni, F.; Leonardi, S.; Sankowski, P.; Schwiegelshohn, C.; Solomon, S.. - (2019), pp. 1886-1898. (Intervento presentato al convegno 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019 tenutosi a San Diego; United States).
File allegati a questo prodotto
File Dimensione Formato  
Grandoni_Approximate_2019.pdf

accesso aperto

Note: https://epubs.siam.org/doi/10.1137/1.9781611975482.114
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 642.45 kB
Formato Adobe PDF
642.45 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1385670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact