
(1 + ε)-Approximate Incremental Matching
in Constant Deterministic Amortized Time∗

Fabrizio Grandoni†, Stefano Leonardi‡, Piotr Sankowski§

Chris Schwiegelshohn¶, Shay Solomon‖

Abstract

We study the matching problem in the incremental setting,

where we are given a sequence of edge insertions and aim

at maintaining a near-maximum cardinality matching of the

graph with small update time. We present a deterministic

algorithm that, for any constant ε > 0, maintains a (1 + ε)-

approximate matching with constant amortized update time

per insertion.

1 Introduction

Let G = (V,E) be an n-node m-edge undirected
graph. Finding a large cardinality matching in G is
a fundamental optimization problem. For bipartite
graphs, the currently best available time bounds are
O(m

√
n) due to Hopcroft and Karp [21], O(nω) due

to Mucha and Sankowski [29] and Õ(m10/7) due to
Madry [27]. The former two algorithms have been
extend to finding matchings in general (non-bipartite)
graphs as well [28, 29].

In contrast to this static case (where the graph is
given up-front), there has been recently a lot of interest
in the dynamic matching problem. In dynamic setting
we must maintain a (near-)optimal matching as the
graph changes over time. Most of the results have been
given in the fully-dynamic model where edges are added
or deleted over time. It is known how to maintain the
size of the maximum matching with O(n1.495) worst-

∗This work was done in part while a subset of the authors was
visiting the Algorithms and Uncertainty and Bridging Discrete
and Continuous Optimization programs at the Simons Institute
for the Theory of Computing. F. Grandoni is partially supported
by the SNSF Grant 200021 159697/1 and the SNSF Excellence
Grant 200020B 182865/1. S. Leonardi and C. Schwiegelshohn
are partially supported by the ERC Advanced Grant 788893 AM-
DROMA. P. Sankowski is partially supported by ERC Consolida-
tor Grant 772346 TUgbOAT and Polish National Science Centre
grant 2014/13/B/ST6/00770.
†IDSIA, USI-SUPSI
‡Sapienza University of Rome
§University of Warsaw
¶Sapienza University of Rome
‖Tel Aviv University

case update time [33]. And we known that maintaining
the exact value of the maximum matching requires
polynomial update time under reasonable complexity
conjectures [2, 20, 26]. Hence, we turn our attention
to approximate matchings. In this case we know how
to maintain 2-approximate matchings with constant
amortized update time [34], but algorithms achieving
better-than-2 approximations all require polynomial
update time. In particular, we can maintain a (1 + ε)-
approximate matching in the fully-dynamic setting with
update time O(

√
m/ε2) [18], a (3/2 + ε)-approximate

matching with update time O(m1/4/ε2.5) [8], and for
every sufficiently large integer K, an αK-approximation
to the matching size with update time O(n2/K) where
αK ∈ (1, 2). (We survey the existing results in detail in
Section 1.2.) This suggests the question: can we achieve
better approximation in some natural dynamic settings?

In this paper, we consider the incremental model
for dynamic algorithms, where the edges of the graph
can only be inserted but not deleted. We show that in
this case we can give much stronger results than in the
fully-dynamic model:

Theorem 1.1. Given a sequence of edge insertions
to a graph G and a constant ε > 0, there exists
a deterministic algorithm that maintains a (1 + ε)-
approximate matching with Oε(1) amortized update time
per insertion.

We remark that by [26], maintaining a maximum
matching requires polynomial amortized update time
even in the incremental case assuming the 3-SUM
conjecture. Hence, our result is asymptotically optimal,
up to deamortization.

The only previous result for approximate matchings
in the incremental model is due to Gupta [16], who
gave an amortized O(log2 n) update-time algorithm to
maintain (1 + ε)-approximate matchings in bipartite
graphs. Hence, we improve the update time from
polylogarithmic to constant. Moreover, we also extend
the result from bipartite graphs to general graphs.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1886

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1.1 Our Techniques As usual for approximate
matching, our starting point is the well-known fact that
a given matching M is a 1+ 1

` approximation of the max-
imum matching OPT if there are no length 2` + 1 (or
shorter) augmenting paths with respect to M . Hence
it is sufficient to search for a matching OPT` with the
above property for ` = 1/ε.

One simple way to obtain OPT` is to use the
following variant of Edmonds [14] algorithm. Imagine
each undirected edge {a, b} as two oppositely directed
edges ab and ba. Now our goal is to find a short directed
augmenting path, i.e., a path P = (a0, . . . , a2q+1), q ≤ `,
where each edge {ai, ai+1} belongs to the matching iff
i is odd. If we find one such P , we replace the current
matching M by M ⊕ P 1, and iterate.

One simple way to search for P is roughly as follows.
For each free node v, we build an alternating path tree Tv
recursively in the following way. Let a be a given node,
starting with a = v. We first search for a free neighbor
b of a such that the v-a path in Tv plus ab induces an
augmenting path. Otherwise, we expand the subtree
of Tv rooted at a by adding paths of type abc, with ab
unmatched and bc matched, and continue recursively on
each such node c (unless c is at level2 2` already). In
particular, if we do not find any augmenting path, Tv at
the end will have at most 2` levels, where even (resp.,
odd) levels contain matched (resp., unmatched) edges
only. Observe also that all nodes in Tv but the root are
matched, and all nodes at odd levels have precisely one
child. The above procedure has the advantage that it
avoids blossom contractions3. In particular, it works for
general graphs. Unfortunately it is also very slow – its
running time is Ω(n`).

Our high-level approach is to maintain a partial
version of the above alternating path trees Tv, that
can be updated very efficiently under insertion of edges.
While our approach does not allow us to discover all
the augmenting paths of length up to 2` + 1, we are
able to guarantee that any node-disjoint set of missed
augmenting paths of that type has relatively small
cardinality w.r.t. the size of the current matching.
Hence missing those augmenting paths has a negligible
impact on the approximation factor.

Let us describe our approach in more detail, starting
with the simpler bipartite case. We exploit two main
ideas. The first critical idea is to limit the degree of

1With a slight notational abuse, we use P to denote both a
directed path and its undirected variant.

2The level `T (v) of node v ∈ T is v’s hop-distance from the
root of T , and the level `T (ab) of a directed edge ab ∈ T is the
level `T (b) of its highest level endpoint.

3In some sense, each encountered blossom is traversed in both
directions.

nodes in each Tv to some large enough constant ∆
depending on `. In particular, for a given node a in
the above recursive construction, in the case that we
do not find an augmenting path containing a, we only
add up to ∆ paths of type abc. Note that now Tv
contains at most O(∆`) = Oε(1) nodes. Furthermore,
with some extra work we guarantee that each directed
matched edge ab appears in at most one tree Tv at level
i, for each possible even value of i. To see why this is
helpful, imagine that we miss some augmenting path P
because one of its nodes a appears at level i in some
tree Tv where a has already degree ∆. Note that in
this case we might miss discovering P . However, path
P can increase the matching at most by 1. We charge a
fraction 1/∆ of this loss to each one of the ∆ matching
edges that appear at level i+ 2 in the subtree rooted at
a. Each matching edge can be charged by at most 2`
node-disjoint paths this way (using the fact that each
edge appears in at most two directions and ` trees per
direction), hence the total charge is at most 2`

∆ : this is
O(ε) for large enough ∆.

A more subtle problem arises when we do find
an augmenting path P . In that case we destroy the
trees Tv that intersect P and rebuild them. This
operation costs Ω(deg(a)) per reinserted node a, hence
we cannot do that too frequently. Here we exploit
our second main idea. We introduce counters Ci[a]
that are incremented each time a node a is removed
from some tree Tv where it appears at level i. We
stop inserting a at level i in trees when Ci[a] reaches
a large enough constant C depending on `. This way
reinsertions have constant amortized cost. Using a
global counting argument, we can show that, for C large
enough, the total loss due to (node-disjoint) augmenting
paths which are not discovered because one of their
nodes reached the counter threshold is O(ε) times the
size of the current matching. The intuition is as follows.
Each previously discovered augmenting path P implies
an increase of the matching size by one. We interpret
this increase as 1 credit, that we uniformly distribute
among all the nodes of all the trees that we need to
rebuild because of P . Note that there are constantly
many such trees (since the length of P is bounded and
nodes are duplicated a constant number of times) and
each such tree contains constantly many nodes (due to
the degree and depth bound of each Tv). Hence each
affected node receives a constant fraction of 1 credit.
When the fractional credits accumulated at v reach a
total of Ω(1/ε), these credits can be used to compensate
the loss due to any future augmenting path involving v.

In the case of general graphs the requirement that
each directed matching edge appears in at most one
copy per level i is too restrictive: indeed, it might

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1887

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

happen that we fail to discover an augmenting path not
due to the degree or counter constraints, but because
of the presence of a blossom. To better understand
this issue, consider the following scenario. Consider an
augmenting path u′αβu′′, and assume that edge {u′′, α}
exists. With the algorithm for the bipartite case we
might have αβ appearing at level 2 in Tu′′ . This would
prevent us from adding αβ at level 2 in Tu′ , and at
the same time the path in Tu′′ from u′′ to β cannot be
extended to an augmenting path by adding edge βu′′.
This specific issue can be addressed by allowing αβ to
appear at level 2 in two different trees (with distinct
roots), but this is not sufficient in general.

In order to address the above problem, we introduce
a notion of simple path covering that, to the best of our
knowledge, is new and might be of independent interest.
For two paths P and P ′ (represented as a sequence of
nodes) starting and ending at some node s, resp., let
P ◦ P ′ denote their concatenation. We show that any
set U of simple paths of length κ ending at some node s,
contains a subset C of size at most (κ+1)κ

′
such that the

following covering property holds: given any path P ′ of
length κ′ starting at s and a path P ∈ U such that P ◦P ′
is simple, then there exists some P ′′ ∈ C with the same
property. Furthermore C can be computed efficiently
with a greedy algorithm.

Intuitively, in our case U will be the set of alter-
nating paths of length κ starting at some free node and
ending at some node s, so that there exists some aug-
menting path P ◦P ′ of length κ+κ′ ≤ 2`+1 with P ∈ U
as a prefix. Our construction shows that it is sufficient
to maintain the cover C of U in our trees Tv. In turn,
this can be achieved by allowing each directed edge ab
to appear in up to `O(`) trees at the same level. This
affects the values of the parameters ∆ and C and the
running time only by a constant factor (depending on
`).

1.2 Other Related Work Given the existence of a
polynomial lower bounds for maintaining even the value
of the maximum matching (see below), approximate
matching algorithms have been studied.

The Fully Dynamic Setting: Onak and Ru-
binfeld [31] gave an O(1)-approximation in amortized
O(log2 n) update time; this was improved by Bhat-
tacharya et al. [9, 10] to a deterministic (2 + ε)-
approximation with polylogarithmic amortized update
time. Extending prior work by Ivkovic and Lloyd [22]
and Baswana et al. [5], Solomon [34] gave an algorithm
to maintain a maximal (hence 2-approximate) match-
ing with high probability in amortized constant update
time. For worst-case update times, Bhattacharya et
al. [9] showed (2 + ε)-approximation for the fractional

setting with update time O(log3 n). This was recently
extended to the integral setting independently by Arar
et al. [3] and Charikar and Solomon [12]. For bipar-
tite graphs, Bernstein and Stein [7] gave a (3/2 + ε)-
approximation with update time O(4

√
m). Building

on work by Neiman and Solomon [30], Gupta and
Peng [18] showed a (1 + ε)-approximation with update
time O(

√
m/ε2); this was improved for low arboricity

graphs by Peleg and Solomon [32].

The Incremental Setting: The incremental set-
ting has received much less attention. As mentioned
above, Gupta [16] gave a (1 + ε)-approximation for
this setting, with amortized O(log2 n)-update time. His
approach is based on the multiplicative-weight-update
method, which makes it unlikely that an improved anal-
ysis will yield constant update times. Moreover, his
approach is based on maintaining fractional matchings,
which makes it harder to extend it to the non-bipartite
case. Recently, Gupta and Khan [17] gave an algo-
rithm for maintaining an exact matching with an amor-
tized update time of O(n), which is essentially opti-
mal (see below for lower bounds). Other incremen-
tal models have been considered in the online algo-
rithms literature, e.g., the bipartite vertex-arrival model
of Karp, Vazirani, and Vazirani [24]. In this setting,
Bosek et al. [11] give algorithms matching the runtime
of Hopcroft-Karp [21], and Bernstein et al. [6] bound
the number of edge-changes. Solomon also studied the
number of edge-changes in the fully dynamic and incre-
mental setting [35]. Edge-arrivals have also been studied
in the streaming and online model: while better-than-2
results are known for random-order models [25, 4, 19],
nothing better than a factor-2 approximation is known
for the case of adversarial arrivals; also, see [15, 23] for
some lower bounds in these settings.

Lower Bounds: Abboud and Williams [2] gave poly-
nomial lower bounds on the update time when main-
taining a maximum bipartite matching under different
conjectures: their lower bounds are worst-case in the
incremental or decremental case, and amortized in the
fully dynamic case. Henzinger et al. [20] gave a stronger
lower bound of Ω(m1/2−o(1)) for the mentioned cases un-
der the OMv conjecture. Kopelowitz et al. [26] showed
that maintaining a maximum matching in incremental
or decremental graphs requires amortized Ω(n0.333−o(1))
update time assuming the 3-SUM conjecture. Dahl-
gaard [13] showed that even for planar bipartite graphs,
no algorithm to maintain a maximum matching in the
incremental setting can have amortized O(n1−ε) update
time under OMv (see also [1]).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1888

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

2 Preliminaries

Let G = (V,E) be an unweighted undirected graph.
Given a subgraph G′ (possibly described as a subset
of edges), we denote by V (G′) and E(G′) its node
and edge set, resp. In order to simplify the notation,
we sometimes use G′ instead of V (G′) or E(G′) when
the meaning is clear from the context. We denote the
neighborhood of a node v by N(v).

A matching is a set of edges M ⊆ E such that
no two edges of M share a common node. We call
the nodes in V (M) matched, and the remaining nodes
free or unmatched. Similarly, edges in M are matched,
and the remaining edges are unmatched. By OPT
we denote a matching of maximum cardinality. An
alternating path is a path whose edges alternate between
unmatched and matched ones. An augmenting path is
an alternating path whose endpoints are both free. We
denote the symmetric difference of two sets A and B by
A ⊕ B := (A ∪ B) \ (A ∩ B). If P is an augmenting
path with respect to M , then P ⊕M is a matching. For
a collection of node-disjoint paths P, we use P also to
denote the union of their edges. The following claim
follows from standard matching theory.

Lemma 2.1. Let M be a matching and let OPT denote
an optimal matching. Then for any ` there exists a set
of node-disjoint augmenting paths P` of length at most
2`+ 1 such that `+1

` · |M ⊕ P`| ≥ |OPT |.

Proof. Let Q := M ⊕ OPT . Q consists of even length
alternating paths and cycles, or augmenting paths. The
former two we can ignore, as they do not increase the
size of the matching. Let P` be the set of augmenting
paths of length at most 2` + 1 of Q. Then OPT` :=
M ⊕ P` has no augmenting paths of length at most
2` + 1. It is well-known (see, e.g., [21]) that the latter
condition implies `+1

` |OPT`| ≥ |OPT|.

Given a rooted tree T and a node v ∈ V (T), by
degT (v) we denote the number of children of v, and by
levT (v) the level of v (with root at level 0). We say that
an edge of T is at level i if its bottom endpoint is at that
level.

Proofs and detailed that are omitted from this
extended abstract will appear in the full version of the
paper.

3 The Incremental Algorithm: Bipartite
Graphs

In this section we will focus on the case of bipartite
graphs. This will allow us to introduce part of the main
ideas, while avoiding some technical complications due
to the presence of blossoms in the general case.

The graph G is represented via lists of neighbouring
nodes. As usual in the incremental setting, we assume

that the graph initially contains no edges. Furthermore,
for simplicity, we assume that the set of nodes is known
and fixed a priori (with corresponding data structures
correctly initialized). The second assumption can be
removed by standard doubling techniques, with an
additive constant amortized cost per insertion.

Recall that for each (undirected) edge {a, b} we
consider its two oppositely directed versions ab and
ba, and search for directed augmenting paths, i.e.,
directed paths P = (a0, . . . , a2q+1) where all edges of
type {a2i, a2i+1} are unmatched and all edges of type
{a2i+1, a2i+2} are matched.

We will store multiple copies a′ of the same node a
in different trees Tv. In order to simplify the notation,
we will simply denote one such copy by a when the
meaning is clear from the context.

3.1 The Variables In the following C, ∆, and ` are
constant parameters depending on ε to be fixed later.
The current approximate matching is denoted by M .
We maintain the following variables.

• For each matched node v ∈ V (M), its mate mate[v]
(i.e. {v, mate[v]} ∈ M). We set mate[v] = null if
v is free.

• For each free node v /∈ V (M), one alternating path
tree Tv initially containing v only. Intuitively, these
trees are used to discover (directed) augmenting
paths having v as an endpoint. In the following we
consider the degree degTv

(w) and level levTv
(w) of

w in Tv as updated implicitly. By Tv(a) we denote
the v-a path in Tv.

• For each level i = 0, 1, . . . , 2` and each node a ∈ V ,
the root Ri[a] = v of the tree Tv containing a at
level i (null if there is no such tree).

• For each level i = 0, 1, . . . , 2` and each node a ∈ V ,
an integer counter Ci[a] initialized to 0. Intuitively,
the sum of the counters is an estimate of the current
matching size up to constant factors.

We critically maintain the following invariant for
the trees Tv.

Invariant 1. (Tree Invariant) Each tree Tv is
maximal w.r.t. the following constraints under insertion
of edges:

• (Alternating Path) For each leaf a ∈ Tv, Tv(a)
is an even-length duplicate-free alternating path.
Furthermore, no node a at even level in Tv is
adjacent to a free node b /∈ Tv(a).

• (Depth) The depth of each Tv is at most 2`.

• (Degree) The maximum degree of each Tv is at
most ∆.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1889

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

insert({a′, b′})
1: Add {a′, b′} to G
2: Paug ← ∅, Vexp ← ∅
3: for i ∈ {1, 3, . . . , 2` + 1} do
4: Vexp[i]← Vexp[i] ∪ {a′b′, b′a′};
5: while Paug 6= ∅ ∨ Vexp 6= ∅ do
6: if Paug 6= ∅ then
7: augment();
8: Paug ← ∅;
9: else

10: Extract bc from non-empty
Vexp[i] with minimum i;

11: expand(bc, i);

Figure 1: Procedures insert().

• (Counter) No Tv contains a node w at level i with
Ci[w] ≥ C.

• (Duplication) For each level i and node a, a can
appear in at most one tree Tv at level i (hence Ri[a]
is well defined).

We will assume that Invariant 1 holds before each
edge insertion, and we will later show how to restore
it after the insertion of some edge. Note that the
first 2 properties are essentially the same as those
in the previously described variant of Hopcroft-Karp
algorithm, while the last 3 properties are a novelty of
our approach.

3.2 The Procedures Upon insertion of an edge
{a′, b′} we execute the main procedure insert({a′, b′})
which is described in Figure 1. This procedure exploits
two global variables Paug and Vexp.

Variable Paug is used to store any discovered aug-
menting path (of length at most 2`+ 1). Variable Vexp
is a vector indexed by levels i ∈ {0, 1, . . . , 2`+ 1}. Each
Vexp[i], i ≥ 1, contains a list of directed edges bc. Intu-
itively, each such bc is an edge that can be potentially
inserted at level i in some tree Tv. Furthermore, in the
case that bc belongs to (or is inserted in) some tree Tv,
it is possible that the subtree rooted at c is not maxi-
mal. As a boundary case, Vexp[0] contains pairs of type
vv. Intuitively, this corresponds to nodes v for which
we have to reconstruct the entire tree Tv.

Procedure insert() adds {a′, b′} to G, and initializes
Paug and Vexp to the empty set4 (lines 1-2). Then (lines
3-4) it adds a′b′ and b′a′ to Vexp[i] for each odd level i.
Intuitively, these are (unmatched) edges that wish to be
added to some Tv for the first time. Finally it executes
a while loop (lines 5-11) that iterates as long as at least
one of Paug or Vexp is not empty. In each execution of

4For Vexp this means that all its entries are empty lists.

augment()

1: Let Paug = (a0, . . . , a2q+1);
2: Let r(Paug) be the set of roots of trees Tv containing

some node in Paug;
3: Update mate according to M ←M ⊕ Paug;
4: for each v ∈ r(Paug) and each w ∈ Tv, with i := levv(w)

do
5: Ci[w]← Ci[w] + 1;
6: for each v ∈ r(Paug) and each bc ∈ E(Tv) ∩M at even

level i do
7: Vexp[i]← Vexp[i] ∪ {bc};
8: for each bc ∈ Paug ∩M and each i ∈ {2, 4, . . . , 2`} do
9: Vexp[i]← Vexp[i] ∪ {bc, cb};

10: for each v ∈ r(Paug) do
11: if v is free ∧ C0[v] < C then
12: Set Tv ← ({v}, ∅) and update Ri’s;
13: Vexp[0]← Vexp[0] ∪ {vv};
14: else
15: Set Tv ← null and update Ri’s;

Figure 2: Procedure augment().

the loop, it first checks if Paug 6= null, in which case it
calls the subroutine augment() and then resets Paug to
null (lines 6-8). Otherwise (lines 9-11), it extracts bc
from the non-empty Vexp[i] with minimum i, and calls
expand(bc, i).

The subroutine augment() (see Figure 2) is intu-
itively used to implement the augmenting path Paug =
(a0, . . . , a2q+1). This procedure updates the matching
to M⊕Paug (line 3). Furthermore, it destroys each tree
Tv that intersect Paug, which involves the following op-
erations5. It increments the counter Ci[w] of any node
w ∈ Tv appearing at level i (lines 4-5). Then (lines 6-
7) it adds to Vexp[i] each edge bc ∈ E(Tv) ∩M at even
level i. Note that these edges do not belong to Paug (due
to the update of the matching in line 3). It also adds
(lines 8-9) all the edges of Paug ∩M , in both directions,
to Vexp[i] for each even i ≥ 2. These are newly cre-
ated matching edges that might be inserted potentially
at any even level. Finally, in lines 10-15, the procedure
sets each involved tree Tv to ({v}, ∅) if v is free and
C0[v] < C, and to null otherwise. In the first case it
also adds vv to Vexp[0] to recall that the tree Tv has to
be reconstructed. The Rj ’s are updated in an obvious
way.

The recursive subroutine expand(c, i) is described
in Figure 3. Intuitively, this is the subroutine that
is used to construct the trees Tv, and to keep them
maximal. It gets a pair bc and a level i ≥ 0 (with b = c
for i = 0). This procedure halts if the counters of b or c

5A “partial destruction” of trees would also work, but we here
consider the total destruction case to simplify the presentation.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1890

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

expand(bc, i)

1: if i ≥ 2` + 2 ∨ Paug 6= null ∨ Ci[c] ≥ C ∨ Ci−1[b] ≥ C
then

2: halt;
3: if i is odd ∧ bc /∈M then
4: if v := Ri−1[b] 6= null then
5: if c is free then
6: Set Paug ← Tv(b) ◦ (b, c) and halt;
7: else
8: Let d = mate[c];
9: if degTv [b] < ∆ ∧ Ri+1[d] = null ∧ Ci+1[d] < C

∧ c, d /∈ Tv(b) then
10: Add {bc, cd} to Tv and update Rj ’s;
11: expand(cd, i + 1);
12: if i ≥ 2 is even ∧ bc ∈M then
13: for all neighbors a of b do
14: if v := Ri−2[a] 6= null ∧ degTv (a) < ∆ ∧ Ri[c] =

null ∧ b, c /∈ Tv(a) then
15: Add {ab, bc} to Tv and update Rj ’s;
16: if i is even ∧ (bc ∈M ∨ b = c is free) ∧ v := Ri[c] 6= null

then
17: for all neighbors d of c do
18: if d is free then
19: Set Paug ← Tv(c) ◦ (c, d) and halt;
20: else
21: Let e = mate[d];
22: if degTv (c) < ∆ ∧ Ri+2[e] = null ∧ Ci+1[d] < C

∧ Ci+2[e] < C ∧ d, e /∈ Tv(c) then
23: Add {cd, de} to Tv and update Rj ’s;
24: expand(de, i + 2);

Figure 3: Procedure expand(), bipartite graphs.

for the associated level reach the threshold C, and also
if Paug 6= null or i ≥ 2`+ 2.

Lines 3-11 apply to the case that i is odd. Their goal
is to insert the unmatched edge bc at level i in up to one
tree Tv if possible without violating the Tree Invariant.
Intuitively, bc corresponds to some newly inserted edge
{a′, b′} introduced in lines 3-4 of insert(). In this case
b needs to be already contained in some tree Tv at level
i − 1. Lines 5-6 check if c closes an augmenting path
in Tv. If not (lines 7-11), the procedure tries to add
a path of type bcd to Tv, if this is possible respecting
the Tree Invariant. In that case, it calls recursively
expand(cd, i+ 1).

Lines 12-15 apply to the case that i ≥ 2 is even
and bc ∈ M . Here the procedure tries to append bc
at level i in some tree Tv if this does not violate the
Tree Invariant. Intuitively, this corresponds to the case
that bc is either a newly created matching edge, or
some already existing matching edge that used to belong
to a tree that was destroyed by augment(). In both
case adding bc to some tree might be needed to restore
maximality.

Lines 16-24 apply to the case that i is even and
bc ∈ M (hence i ≥ 2) or b = c is free. Then, if c
is contained at level i in some Tv, the procedure tries
to find an augmenting path containing Tv(c) (lines 18-
19). If such path is not found, the procedure expands
in a maximal way the subtree of Tv rooted at c (lines
20-24). This is done by adding paths of type cde,
whenever possible without violating the Tree Invariant,
and calling expand(de, i+ 2) recursively.

3.3 Analysis The slightly technical proof of this
lemma is deferred to Section A in the appendix.

Lemma 3.1. The Tree Invariant holds at the end of
each execution of insert().

Let us next analyze the approximation factor of
the algorithm. We first observe the following direct
consequence of Lemma 3.1.

Lemma 3.2. (Witness Lemma) Let P be an aug-
menting path of length at most 2`+ 1 undetected by the
algorithm. Then one of the following two conditions
holds for some w ∈ V (P):

1. A copy of w appears in some Tv and degTv
(w) =

∆.
2. A copy of w appears in some Tv at level i and
Ci[w] ≥ C.

Proof. Assume for the sake of contradiction that there
exists an augmenting path P not satisfying the two
conditions. We consider the directed augmenting path
P = (u′, α1, β1, α2, β2, . . . , αk, βk, u

′′), with k ≤ `, and
let ei = αiβi. Observe that, by construction, whenever
a node is matched, it remains matched for the rest of
the algorithm.

We prove by induction that for each ei, there
exists a tree Txi containing ei at level 2i. This easily
implies a contradiction. Indeed, Txk

(βk)◦(βk, u′′) would
be an augmenting path undetected by the algorithm,
contradicting the Alternating Path invariant (note that
it cannot be xk = u′′ since bipartite graphs do not
contain blossoms).

For the base case e1, if e1 is contained at level
2 in some tree Tu′ the claim holds with x1 = u′.
Otherwise, observe that the path (u′, α1, β1) satisfies
the constraints Degree, Counter, Alternating Path and
Depth w.r.t. Tu′ . Hence, by the maximality of Tu′

implied by Lemma 3.1, the only reason why this path is
not added to Tu′ is because e1 is already contained at
level 2 in some other tree, a contradiction.

The inductive step follows analogously. Assume the
claim holds up to edge ei, i < `, and consider edge
ei+1. By assumption ei is contained at level 2i in some
tree Txi . If Txi also contains ei+1 at level 2i + 2 the

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1891

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

claim holds with xi+1 = xi. Otherwise, observe that
adding the path (βi, αi+1, βi+1) to Txi

would not violate
the constraints Degree, Counter, Alternating Path and
Depth w.r.t. Txi

. Hence, again by the maximality of
Txi , edge ei+1 must be contained at level 2i+ 2 in some
other tree Txi+1 .

Lemma 3.3. At the end of each insert(), |OPT|
|M | ≤

`+1
` (1 + 2`

∆ + 16`2∆`

C).

Proof. Let P` be the set of node-disjoint augmenting
paths guaranteed by Lemma 2.1 w.r.t. M . We have

(3.1)
|OPT|
|M |

≤ `+ 1

`

|M |+ |P`|
|M |

By the Witness Lemma 3.2, we can partition P` into
the following two subsets:

• The paths Pdegree ⊆ P` that satisfy the degree
condition of Lemma 3.2.

• The remaining paths Pcount = P` \ Pdegree that
(have to) satisfy the counter condition of Lemma
3.2.

We next upper bound the size of these two sets in terms
of |M | and of the constant parameters of the algorithm.
For a path P ∈ Pdegree, let us choose arbitrarily exactly
one copy wP of some node of P that appears in some
tree Tv with degree ∆ at some (even) level i. Let MP

be the ∆ matching edges that descend from wP and
appear at level i+ 2. We charge each one of these edges
by an amount 1/∆. Intuitively, this corresponds to a
distribution of the increase of the matching size (by 1)
due to P . Observe that each directed matching edge
at some level i can be charged at most once by the
node disjointness of the augmenting paths P` and by
the Duplication constraint. Hence each matching edge
is charged by at most 2`/∆. It follows that

(3.2) |Pdegree| ≤ 2`

∆
|M |.

Consider next Pcount. Each augmenting path P
discovered by the algorithm increases the matching size
by precisely 1. The corresponding total increase of
counters equals the number n(P) of (copies of) nodes
in the trees Tv, v ∈ r(P), destroyed because of P . One
has

n(P) =
∑

v∈r(P)

|V (Tv)| ≤
∑

v∈r(P)

4∆`(3.3)

= |r(P)| · 4∆` ≤ (2`(2`− 1) + 2) · 4∆`

≤ 16`2∆`.

In the first inequality above we used the fact that each
Tv contains at most 4∆` nodes for ∆ ≥ 2, and in the
second-last inequality the fact that r(P) contains the
(free) endpoints of P plus at most 2` entries for each
one of the 2`− 1 matched nodes in P . We can conclude
that the sum of the counters is

∑
v∈V

∑2`
i=0 Ci[v] ≤

16`2∆` · |M |.
Let VC be the nodes with counters set to at least C.

Observe that |VC | cannot exceed the sum of all counters
divided by C, since no counter exceeds that value. In the
worst case each w ∈ VC hits a distinct path in Pcount.
Therefore,

|Pcount| ≤ |VC | ≤
1

C

∑
v∈V

2∑̀
i=0

Ci[v](3.4)

≤ 1

C
· 16`2∆` |M |.

Altogether, we achieve

|OPT |
|M |

(3.1)

≤ `+ 1

`

|M |+ |Pdegree|+ |Pcount|
|M |

(3.2)+(3.4)

≤ `+ 1

`

(
1 +

2`

∆
+

16`2∆`

C

)
.

It remains to bound the running time of the algo-
rithm.

Lemma 3.4. The amortized running time per insertion
is O(`2 · C + `3 ·∆`).

Proof. We analyze the cost of the different procedures,
excluding the cost of the corresponding calls to subrou-
tines.

Procedure augment() can be executed at most m
times. The cost of each such execution on Paug is
asymptotically dominated by the total number n(Paug)
of nodes contained in trees Tv with v ∈ r(Paug), that is
O(`2 ·∆`) by (3.3).

In procedure insert() lines 1-4 cost O(`) per edge
insertion. Each execution of the while loop (lines 5-
11) costs O(`). There are at most m such executions
where Paug 6= null, and each such execution adds at
most O(`2∆`) entries to Vexp by the same argument as
before. Hence lines 5-11 have a total cost of at most
O(`3∆` ·m).

It remains to consider the total cost of the procedure
expand(bc, i). Let deg(v) denote the degree of node v in
the final graph. Lines 3-11 cost O(`), and are executed
twice for each odd level i and for each newly inserted
edge {a′, b′}. Hence their total cost is O(`2 ·m).

Each execution of lines 12-15 costs O(`·deg(b)). Let
us charge this cost to b. Note that b cannot be charged
more than C times for each even level i by the Counter

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1892

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Invariant. Indeed, each call to expand(bc, i) for some c,
excluding possibly the first time that b is added to some
tree due to line 11, implies that edge bc was contained
at level i in some destroyed tree Tw. The latter event
in turn implies the increment of Ci−1[b]. Hence the
total cost of these lines is

∑
i=1,3,...,2`−1

∑
b∈V O(C` ·

deg(b)) = O(C`2 ·m).
Each execution of lines 16-24 costs O(`·deg(c)). Let

us charge this cost to c. By the same argument as above,
c is charged at most C times for each even level i. Hence
the total cost of these lines is

∑
i=0,2,...,2`

∑
c∈V O(C` ·

deg(b)) = O(C`2 ·m). The claim follows.

The proof of Theorem 1.1 in the bipartite case follows
easily.

Proof. [Proof of Theorem 1.1] (Bipartite Case) W.l.o.g.
assume that 1/ε is integer and ε ≤ 1. Let us choose

` = 4
ε , ∆ = 8`

ε and C = 64`2∆`

ε . From Lemma

3.4 the amortized time per insertion is O((1/ε)O(1/ε)).
From Lemma 3.3, the approximation factor is at most
`+1
` (1 + 2`

∆ + 16`2∆`

C) ≤ (1 + ε
4)(1 + 2ε

4) ≤ 1 + ε. The
claim follows.

4 The Incremental Algorithm: General Graphs

In this section we deal with the case of general graphs.
In Section 4.1 we describe our simple-paths covering
algorithm. In Section 4.2 we sketch the changes of the
bipartite-case algorithm and analysis that are needed to
address general graphs.

4.1 Simple-Paths Covering We say that a simple
path P ′ (respectively, P) is a valid suffix (resp., valid
prefix) of another simple path P (resp., P ′) if the
concatenated path P ◦ P ′ is a (valid) simple path; the
concatenated path P ◦ P ′ is valid and simple iff the
two paths intersect at a single vertex: the first and last
vertex along paths P ′ and P , resp. Let U = Us be a set
of paths all ending at some arbitrary vertex s. We say
that a path P ′ is covered by U if at least one path P ∈ U
is a valid prefix of P ′; for any integer i ≥ 1, denote by
Coveri(U) the set of length-i paths covered by U . A
subset C = Cs of paths from U is called an i-cover of U
if any length-i path covered by U is also covered by C as
well, i.e., Coveri(U) = Coveri(C). We remark that in
our application U will refer to a set of paths of a given
graph, while P ′ is merely interpreted as any sequence
of distinct nodes.

Fix two integers κ, κ′ ≥ 1, a vertex s, and any set U
of length-κ (simple) paths ending at s. In what follows
we present and analyze a simple algorithm, Algorithm
GreedyCover, for efficiently computing a κ′-cover C of
U . The cover C computed by this algorithm will be
referred to as the greedy cover (for U). Although the

greedy cover is not necessarily of minimum size, we will
show that its size depends only on κ and κ′ (and not on
|U|). It is a-priori unclear and perhaps counterintuitive
that such a simple-paths cover exists for any path set U
(even for κ′ = 1), even regardless of the time needed for
constructing it.

The order of paths in the input path set U de-
termines the output path set C; we thus assume that
the paths of U are stored in some linked list, denoted

by
−→
U , according to a predetermined order. Similarly,

the output path set C is stored in some linked list, de-

noted by
−→
C ; it is technically convenient to guarantee

that the paths will be stored in
−→
C according to their

order in
−→
U . We shall henceforth refer to

−→
U and

−→
C

as the input and output path sequences or lists, where−→
C = GreedyCover(

−→
U , κ′).

Algorithm GreedyCover is recursive. The base of
the recursion if κ′ = 1, in which case the algorithm

works as follows. Write the input path sequence
−→
U =−→

U s as (P1, . . . , Pu), with u = |U|. Write P1 =

(v1, . . . , vκ+1 = s). The algorithm scans
−→
U once

per each vertex of P1 except vκ+1: For each vertex

vi, i = 1, . . . , κ, let P (vi) be the first path in
−→
U

starting with P2 that does not go through vi, setting
P (vi) = null if none exists. The output path sequence
−→
C =

−→
C s is obtained by taking all non-null paths in

{P1, P (v1), P (v2), . . . , P (vκ)} according to their original

order in
−→
U , leaving a single occurrence of each path in−→

C .
For κ′ > 1 the algorithm proceeds as follows. Write

the input path sequence
−→
U =

−→
U s as (P1, . . . , Pu), with

u = |U|. The algorithm computes a κ′-cover for
−→
U

recursively, where (κ′ − i)-covers are computed at the
ith recursion level, for i = 0, 1, . . . , κ′−1. The recursion
bottoms at 1-covers, which are computed using the
already described algorithm for κ′ = 1. Write P1 =

(v1, . . . , vκ+1 = s). The algorithm scans
−→
U once per

each vertex of P1 except vκ+1: For each vertex vi,
i = 1, . . . , κ, it first computes the path subsequence

of
−→
U that consists of all paths starting at P2 that do

not go through vi, denoted by
−−−→
U(vi), and then invokes

the algorithm recursively to compute a (κ′ − 1)-cover

for
−−−→
U(vi). The output path sequence

−→
C is obtained

as follows: First compute the path set that consists of
P1 as well as every path in any of the (κ′ − 1)-covers
computed recursively, and then place all those paths

in
−→
C according to their order in

−→
U , leaving a single

occurrence of each path in
−→
C .

Lemma 4.1. The running time of GreedyCover(U , κ′)
is O((κ+ 1)κ

′ · |U|).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1893

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof. We prove by induction on κ′ that the runtime
of the algorithm is bounded by c((κ + 1)κ

′ · |U|), for a
sufficiently large constant c. For κ′ = 1 the running
time is trivially O(κ · |U|).

We next assume the correctness of the inductive
statement for κ′ − 1 and prove it for κ′, with κ′ ≥ 2.
By induction hypothesis, the runtime of recursively
computing each of the (κ′ − 1)-covers is bounded by
c((κ+1)κ

′−1 ·|U|). Since there are κ such (κ′−1)-covers,
the overall runtime of these recursive computations is
bounded by

κ(c((κ+ 1)κ
′−1)|U|)

= c((κ+ 1)κ
′
|U|)− c((κ+ 1)κ

′−1|U|).

The time needed for computing the κ subsequences−−−→
U(v1), . . . ,

−−−→
U(vκ) of

−→
U is naively bounded by O(κ · |U|).

Clearly, the time needed for computing
−→
C given the

(κ′ − 1)-covers obtained by the recursive computations
is linear in the sum of sizes of those covers, which
is naively bounded by κ · |U|, disregarding the time
needed for guaranteeing that each path will have a single

occurrence in
−→
C . But the latter time is easily bounded

by O(k · |U|) as well. Since κ′ ≥ 2, it follows that the
overall runtime of the algorithm is bounded by

c((κ+ 1)κ
′
· |U|)− c((κ+ 1)κ

′−1 · |U|) +O(κ · |U|)

≤ c((κ+ 1)κ
′
· |U|)

for a sufficiently large constant c.

Lemma 4.2. GreedyCover(U , κ′) outputs a (feasible)
κ′-cover C of U of size at most (κ+ 1)κ

′
.

Proof. Let us first bound the size of C. For κ′ = 1,
this size is trivially at most κ+ 1. We next assume the
correctness of the inductive statement for κ′ − 1 and
prove it for κ′, with κ′ ≥ 2. By induction hypothesis,
each of the (κ′−1)-covers computed recursively is of size
bounded by (κ+1)κ

′−1. Since there are κ such (κ′−1)-
covers, their union contains at most κ · (κ + 1)κ

′−1 ≤
(κ+ 1)κ

′ − 1 paths. The computed κ′-cover C contains
the paths in this union as well as P1, hence its size is
bounded by (κ+ 1)κ

′
.

Consider next the correctness of the algorithm. Let
us start with κ′ = 1. Consider any length-1 path
P ′ = (s, t) covered by U , and let P ∈ U be a valid
prefix of P ′. We argue that P ′ is covered by C. If P1 is
a valid prefix for P ′, we are done. Otherwise P1 must go
through t. Let i ∈ [κ] be such that vi = t. Since P ∈ U
is a valid prefix of P ′, P (vi) 6= null. By definition,
P (vi) is a simple path ending at s that does not go
through vi = t, hence P (vi) ∈ C is a valid prefix of P ′.

We next assume the correctness of the inductive
statement for κ′−1 and prove it for κ′, with κ′ ≥ 2. Con-
sider any length-κ′ path P ′ = (s = u1, u2, . . . , uκ′+1)
covered by U , and let P ∈ U be a valid prefix of
P ′. We argue that P ′ is covered by C. Recalling that
P1 ∈ C, the case that P1 is a valid prefix of P ′ is im-
mediate. We henceforth assume that P ′ goes through
at least one vertex, denoted by v, among the first κ
vertices v1, . . . , vκ of P1; write v as both vi and uj ,
with i ∈ [κ], j ∈ [2, κ′ + 1]. The fact that P ∈ U is
a valid prefix of P ′ implies that P does not go through

vi, and therefore P ∈
−−−→
U(vi), which means that P ′ is

covered by U(vi). Now consider the length-(κ′−1) path
P̃ obtained from P ′ by removing vertex uj from it, i.e.,

P̃ = (s = u1, . . . , uj−1, uj+1, . . . , uκ′+1) if j ≤ κ′ and

P̃ = (s = u1, . . . , uκ′) if j = κ′ + 1.6 Since P is a valid
prefix of P ′, it is also a valid prefix of P̃ . By induction

hypothesis and since P ∈
−−−→
U(vi) is a valid prefix of P̃ , it

follows that P̃ is covered by the (κ′−1)-cover computed

recursively for
−−−→
U(vi), denoted by

−→
Ci ; let Π be a path in

−→
Ci that is a valid prefix of P̃ . Since Π belongs to U(vi),
it does not go through vi = uj , hence Π is also a valid
prefix of P ′. Noting that Π ∈ Ci ⊆ C concludes the
proof.

The following observation, implied by the descrip-
tion of the algorithm, will be useful in the sequel.

Observation 1. Let κ, κ′ ≥ 1, let
−→
U =

−→
Us be any

sequence of κ-length paths all ending at an arbitrary

vertex s, and let
−→
C =

−→
Cs = GreedyCover(

−→
U , κ′). Then

GreedyCover(
−→
C , κ′) =

−→
C , and more generally:

• For any supersequence
−→
C ′ =

−→
C ′s of

−→
C in which

all elements of
−→
C appear at the start in

−→
C ′,

GreedyCover(
−→
C ′, κ′) returns a supersequence of

−→
C

in which all elements of
−→
C appear at the start.

• For any subsequence
−→
C ′ =

−→
C ′s of

−→
C , we have

GreedyCover(
−→
C ′, κ′) =

−→
C ′.

4.2 Algorithm and Analysis for General
Graphs In this section we sketch how to update the
algorithm and analysis to address the case of general
graphs. The details will appear in the full version of
the paper.

As mentioned in the introduction, we need to allow
nodes to appear at the same level in multiple trees if we
want to detect augmenting paths despite the presence of
blossoms. However, we critically need that the number

6The paths are not restricted to an underlying graph, so any
sequence of vertices without repetitions forms a simple path.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1894

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

of copies of a given node is bounded by some function
ρ of ` only. This way, by scaling the constants ∆ and
C properly (by a factor depending on ρ), we can still
have a 1 + ε approximation in constant amortized time
by essentially the same analysis as in the bipartite case.

Having at hand our simple-paths covering notion
and algorithm, the solution is relatively straightforward
modulo a number of small technical details. Intuitively,
consider an augmenting path Paug = (v0, v1, . . . , v2q+1),
2q + 1 ≤ 2` + 1, whose nodes are below the degree
and counter threshold. We would like to guarantee
that Paug or some other augmenting path intersecting
with it is discovered by the algorithm. Consider node
vi, 1 ≤ i ≤ 2q, and let P = (v0, v1, . . . , vi) and
P ′ = (vi, vi+1, . . . , v2q+1) be the corresponding prefix
and suffix of Paug, resp. In particular, P and P ′ have
length κ = i and κ′ = 2q+1− i, resp. For our goals it is
sufficient to guarantee that vi belongs to some tree Tw
such that Tw(vi)◦P ′ is a valid augmenting path. In turn,
this property is guaranteed if we ensure the following.
Let Pi(vi) be the collection of (simple alternating) paths
of length κ that start at the root w of some tree Tw and
end at a copy of vi. It is sufficient to guarantee that
Pi(vi) is a κ′-cover with respect to a proper set of paths
U of length κ that includes P . In particular, this implies
that there exists some P ′′ ∈ Pi(vi) such that P ′′ ◦ P ′ is
a valid augmenting path.

It is therefore sufficient to modify the Tree Invariant
in order to incorporate the above notion of κ′-covers,
and modify the algorithm so that the new invariant
is maintained. Using our GreedyCover algorithm to
update the paths, we can ensure that the number of
paths of type Pi(vi) (hence the number of copies of
each node at a given level i) never exceeds a constant
ρ = `O(`). In turn this implies an increase of the
running time by a constant factor depending on ρ due
to maintaining the mentioned κ′-covers dinamically.

The proof of Theorem 1.1 for general graphs follows,
modulo technical details.

References

[1] Amir Abboud and Søren Dahlgaard. Popular con-
jectures as a barrier for dynamic planar graph algo-
rithms. In IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, 9-11 Octo-
ber 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 477–486, 2016.

[2] Amir Abboud and Virginia Vassilevska Williams. Pop-
ular conjectures imply strong lower bounds for dynamic
problems. In 55th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, October 18-21, 2014, pages 434–443,
2014.

[3] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein,
and David Wajc. Dynamic matching: Reducing in-
tegral algorithms to approximately-maximal fractional
algorithms. In 45th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, pages 7:1–
7:16, 2018.

[4] Sepehr Assadi, MohammadHossein Bateni, Aaron
Bernstein, Vahab S. Mirrokni, and Cliff Stein. Coresets
meet EDCS: algorithms for matching and vertex cover
on massive graphs. CoRR, abs/1711.03076, 2017.

[5] Surender Baswana, Manoj Gupta, and Sandeep Sen.
Fully dynamic maximal matching in o(log n) update
time. SIAM J. Comput., 44(1):88–113, 2015.

[6] Aaron Bernstein, Jacob Holm, and Eva Rotenberg.
Online bipartite matching with amortized replace-
ments. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 947–959, 2018.

[7] Aaron Bernstein and Cliff Stein. Fully dynamic match-
ing in bipartite graphs. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part
I, pages 167–179, 2015.

[8] Aaron Bernstein and Cliff Stein. Faster fully dynamic
matchings with small approximation ratios. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016, pages 692–
711, 2016.

[9] Sayan Bhattacharya, Monika Henzinger, and
Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 785–804,
2015.

[10] Sayan Bhattacharya, Monika Henzinger, and Danupon
Nanongkai. New deterministic approximation algo-
rithms for fully dynamic matching. In Proceedings of
the 48th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 398–411, 2016.

[11] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski,
and Anna Zych. Online bipartite matching in offline
time. In 55th IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 384–393, 2014.

[12] Moses Charikar and Shay Solomon. Fully dynamic
almost-maximal matching: Breaking the polynomial
worst-case time barrier. In 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Repub-
lic, pages 33:1–33:14, 2018.

[13] Søren Dahlgaard. On the hardness of partially dy-
namic graph problems and connections to diameter.
In 43rd International Colloquium on Automata, Lan-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1895

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

guages, and Programming, ICALP 2016, July 11-15,
2016, Rome, Italy, pages 48:1–48:14, 2016.

[14] Jack Edmonds. Paths, trees, and flowers. Canadian
Journal of Mathematics, 17:449–467, 1965.

[15] Ashish Goel, Michael Kapralov, and Sanjeev Khanna.
On the communication and streaming complexity of
maximum bipartite matching. In Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 468–485, 2012.

[16] Manoj Gupta. Maintaining approximate maximum
matching in an incremental bipartite graph in polylog-
arithmic update time. In 34th International Confer-
ence on Foundation of Software Technology and The-
oretical Computer Science, FSTTCS 2014, December
15-17, 2014, New Delhi, India, pages 227–239, 2014.

[17] Manoj Gupta and Shahbaz Khan. Simple dynamic
algorithms for maximal independent set and other
problems. CoRR, abs/1804.01823, 2018.

[18] Manoj Gupta and Richard Peng. Fully dynamic
(1+epsilon)approximate matchings. In 54th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, pages 548–557, 2013.

[19] Guru Prashanth Guruganesh and Sahil Singla. Online
matroid intersection: Beating half for random arrival.
In Integer Programming and Combinatorial Optimiza-
tion - 19th International Conference, IPCO 2017, Wa-
terloo, ON, Canada, June 26-28, 2017, Proceedings,
pages 241–253, 2017.

[20] Monika Henzinger, Sebastian Krinninger, Danupon
Nanongkai, and Thatchaphol Saranurak. Unifying and
strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Pro-
ceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 21–30, 2015.

[21] J E Hopcroft and R M Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4):225–231, 1973.

[22] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic main-
tenance of vertex cover. In Graph-Theoretic Concepts
in Computer Science, 19th International Workshop,
WG ’93, Utrecht, The Netherlands, June 16-18, 1993,
Proceedings, pages 99–111, 1993.

[23] Michael Kapralov. Better bounds for matchings in
the streaming model. In Proceedings of the 24th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1679–1697, 2013.

[24] Richard M. Karp, Umesh V. Vazirani, and Vijay V.
Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990,
Baltimore, Maryland, USA, pages 352–358, 1990.

[25] Christian Konrad, Frédéric Magniez, and Claire Math-
ieu. Maximum matching in semi-streaming with
few passes. In Proceedings of the 16th Workshop
on Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques (AP-

PROX/RANDOM), pages 231–242, 2012.
[26] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher

lower bounds from the 3sum conjecture. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1272–1287, 2016.

[27] Aleksander Madry. Navigating central path with elec-
trical flows: From flows to matchings, and back.
In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 253–262, 2013.

[28] Silvio Micali and Vijay V. Vazirani. An Ø(
√
|V ||E|)

algorithm for finding maximum matching in general
graphs. In Proceedings of the 21st Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 17–27, 1980.

[29] Marcin Mucha and Piotr Sankowski. Maximum match-
ings via Gaussian elimination. In Proceedings of
the 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 248–255, 2004.

[30] Ofer Neiman and Shay Solomon. Simple deterministic
algorithms for fully dynamic maximal matching. ACM
Trans. Algorithms, 12(1):7:1–7:15, 2016.

[31] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a
large matching and a small vertex cover. In Proceedings
of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pages 457–464, 2010.

[32] David Peleg and Shay Solomon. Dynamic (1 +
epsilon)-approximate matchings: A density-sensitive
approach. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 712–729, 2016.

[33] Piotr Sankowski. Faster dynamic matchings and ver-
tex connectivity. In Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, January
7-9, 2007, pages 118–126, 2007.

[34] Shay Solomon. Fully dynamic maximal match-
ing in constant update time. In IEEE 57th An-
nual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 325–334, 2016.

[35] Shay Solomon. Dynamic approximate matchings with
an optimal recourse bound. CoRR, abs/1803.05825,
2018.

A Proof of the Tree Invariant Lemma 3.1

Let us show that the Tree Invariant is maintained by
insert().

Lemma A.1. If procedure expand(bc, i) ends with
Paug = null and with c belonging to some Tv, then
the subtree of Tv rooted at c satisfies the Tree Invariant
constraints and is maximal w.r.t. those constraints.

Proof. Let us assume that c finally belongs to some tree

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1896

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Tv and Paug = null, otherwise there is nothing to show.
We remark that expand() might be called on some edge
bc that does not belong to any Tv initially, and might
fail to insert c in any such tree. We prove the claim by
induction on decreasing values of i. The claim trivially
holds whenever i = 2`+1. Indeed in that case it cannot
happen that Paug = null and at the same time c is
added to some tree Tv. Similarly, the claim holds for
i = 2` since in that case the subtree rooted at c contains
c only.

Suppose next that the claim is true up to level
i + 1 and consider level i. For odd i, bc must be some
newly inserted edge. In that case expand(), if possible,
adds a path of type bcd to some tree Tv, and then calls
expand(cd, i + 1). The claim follows by induction. For
even i, expand() adds bc at level i in some tree Tv, if
needed, then adds a maximal set of paths of type cde
to Tv, and for each such path it calls expand(de, i+ 2).
The claim follows by inductive hypothesis.

Proof. [Proof of Lemma 3.1] We prove the claim by
induction on the number of insertions. The claim is
trivially true before the first insertion. Next assume the
claim holds for the first j−1 insertions, and let {a′, b′} be
the j-th inserted edge. Observe that, whenever we add
an edge to any tree Tv, this is via a call to expand(). By
definition, the latter procedure augments trees without
violating the constraints of the Tree Invariant until it
terminates or finds an augmenting path involving Tv
(that leads to the destruction of Tv). Therefore, it
is sufficient to show that the trees Tv are maximal
w.r.t. the Tree Invariant constraints at the end of the
execution of insert({a′, b′}).

Assume by contradiction that this is not the case,
in particular there exists a non-maximal tree Tv at the
end of the procedure. Note that this implies that v is
free at that time.

We distinguish two cases. Suppose first that vv
is inserted in Vexp[0] at least once, and let t be the
last iteration when vv is extracted from Vexp[0]. Upon
execution of expand(vv, 0) at iteration t, we cannot find
an augmenting path involving v. Indeed otherwise the
following call to augment() would match v. Thus, by
Lemma A.1, Tv is maximal, a contradiction.

We can therefore assume that the non-maximal tree
Tv at the end of the while loop involves a pair vv which
never appears in Vexp[0]. Let T startv and T endv be the
status of Tv at the beginning of the first iteration of the
while loop and at the end of the procedure, respectively.
Since Tv is never destroyed by augment(), it can be
updated only by expand(), than can only add edges and
nodes to Tv. Thus, for any intermediate status T ′v of Tv,

one has:

(A.1) T startv ⊆ T ′v ⊆ T endv .

If no augmenting path is ever discovered, then by
inductive hypothesis the only possibility for a tree Tw to
be non-maximal is that Tw should include a′b′ at some
odd level i for the newly inserted edge {a′, b′}. However
the calls to expand(a′b′, i) guarantee that a′b′ is inserted
in at most one such tree Tw if possible, and in that case
the subtree of Tw rooted at b′ is later augmented in a
maximal way by Lemma A.1. Hence there cannot exist
a non-maximal tree Tv, a contradiction.

We can therefore assume that some first augmenting
path Paug is discovered. This path clearly contains the
edge a′b′ or b′a′. We can therefore conclude that T startv

does not contain nodes a′ nor b′, since otherwise it would
be destroyed by the first call to augment(). This in turn
implies that T startv is maximal at the beginning of the
first iteration of the while loop, since the unmatched
edges a′b′ and b′a′ cannot be added to it.

By assumption, T endv is not maximal. In partic-
ular, there must exist a tuple (a, b, c, i), with abc not
contained in T endv and i ≥ 2 even, such that: (i)
Ci[a], Ci+1[b], Ci+2[c] < C and degT end

v
(a) < ∆, (ii)

a ∈ T endv at level i and b, c /∈ T endv (a), (iii) {a, b} /∈ M
and {b, c} ∈M , (iv) bc is not contained at level i+ 2 in
some tree Tw at the end of the procedure.

Let T tv be the status of Tv at any discrete time slot t
between the beginning of the first while loop and the end
of the procedure. By the previous discussion there must
exist one such time slot t so that T tv violates precisely
one of the analogues of the conditions (i)-(iv), while T t

′

v

satisfies all of them for any t′ > t. We next distinguish 4
subcases, depending on the condition (x) that is violated
by T tv .

Case (x)=(i). This case cannot occur since counters
can only increase over time, and the same holds for
degTv

(a) by (A.1).

Case (x)=(ii). Then a ∈ T t+1
v . This involves a call

of type expand(wa, i), that must add abc to Tv at some
later point since the conditions (i), (iii) and (iv) are
satisfied at any time t′ ≥ t + 1 by definition. This
contradicts the assumptions.

Case (x)=(iii). This means that an execution of
augment() at time t + 1 either (1) turns edge {a, b}
from matched to unmatched, or (2) turns edge {b, c}
from unmatched to matched. However (1) cannot occur
since it would imply the destruction of Tv (given that
a ∈ Tv at that time). Assuming (2), by construction
bc is added to Vexp[i + 2] and hence insert() executes
expand(bc, i + 2) at some later time. At that point
the tuple (a, b, c, i) satisfies all the conditions (i)-(iv),

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1897

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

which implies that expand(bc, i + 2) must add bc to a
maximal number of trees Tw at level i. This contradicts
the assumptions.

Case (x)=(iv). This implies that bc is removed at
time t + 1 from some tree Tw where it was contained
at level i + 2. This however implies that at some later
point insert() executes expand(bc, i+ 2). At that point
all conditions (i)-(iv) hold, hence expand() must add
bc to a maximal number of trees Tw at level i. This
contradicts the assumptions.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1898

D
ow

nl
oa

de
d

04
/1

6/
20

 to
 1

51
.1

00
.4

7.
18

9.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Our Techniques
	Other Related Work

	Preliminaries
	The Incremental Algorithm: Bipartite Graphs
	The Variables
	The Procedures
	Analysis

	The Incremental Algorithm: General Graphs
	Simple-Paths Covering
	Algorithm and Analysis for General Graphs

	Proof of the Tree Invariant Lemma 3.1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 13
 12
 13

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 13
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 13
 0
 1

 1

 HistoryList_V1
 qi2base

