We study a static version of the Schroedinger–Poisson–Slater equation, with a power nonlinear term. The case when the power p < 2 being already studied, we consider here p ≥ 2. For p > 2 we study both the existence of ground and bound states. It turns out that p = 2 is critical in a certain sense, and will be studied separately. Finally, we prove that radial solutions satisfy a point-wise exponential decay at infinity for p > 2.

Ground and bound states for a static Schrödinger-Poisson-Slater problem / Ianni, I; Ruiz, David. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 14:(2012). [10.1142/S0219199712500034]

Ground and bound states for a static Schrödinger-Poisson-Slater problem

IANNI I;
2012

Abstract

We study a static version of the Schroedinger–Poisson–Slater equation, with a power nonlinear term. The case when the power p < 2 being already studied, we consider here p ≥ 2. For p > 2 we study both the existence of ground and bound states. It turns out that p = 2 is critical in a certain sense, and will be studied separately. Finally, we prove that radial solutions satisfy a point-wise exponential decay at infinity for p > 2.
2012
Schroedinger–Poisson–Slater problem; variational methods; Pohozaev identity; concentration-compactness
01 Pubblicazione su rivista::01a Articolo in rivista
Ground and bound states for a static Schrödinger-Poisson-Slater problem / Ianni, I; Ruiz, David. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - 14:(2012). [10.1142/S0219199712500034]
File allegati a questo prodotto
File Dimensione Formato  
Ianni_GroundandBound_2012.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 272.97 kB
Formato Adobe PDF
272.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Ianni_preprint_GroundandBound_2012.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 209.93 kB
Formato Adobe PDF
209.93 kB Adobe PDF Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1384975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 52
social impact