The aim of process discovery is to build a process model from an event log without prior information about the process. The discovery of declarative process models is useful when a process works in an unpredictable and unstable environment since several allowed paths can be represented as a compact set of rules. One of the tools available in the literature for discovering declarative models from logs is the Declare Miner, a plug-in of the process mining tool ProM. Using this plug-in, the discovered models are represented using Declare, a declarative process modelling language based on LTL for finite traces. In this paper, we use a combination of an Apriori algorithm and a group of algorithms for Sequence Analysis to improve the performances of the Declare Miner. Using synthetic and real life event logs, we show that the new implemented core of the plug-in allows for a significant performance improvement. © 2016 IEEE.

Apriori and sequence analysis for discovering declarative process models / Kala, Taavi; Maggi, FABRIZIO MARIA; DI CICCIO, Claudio; Di Francescomarino, Chiara. - (2016), pp. 50-58. (Intervento presentato al convegno 20th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2016 tenutosi a Vienna; Austria) [10.1109/EDOC.2016.7579378].

Apriori and sequence analysis for discovering declarative process models

Fabrizio Maria Maggi;Claudio Di Ciccio;
2016

Abstract

The aim of process discovery is to build a process model from an event log without prior information about the process. The discovery of declarative process models is useful when a process works in an unpredictable and unstable environment since several allowed paths can be represented as a compact set of rules. One of the tools available in the literature for discovering declarative models from logs is the Declare Miner, a plug-in of the process mining tool ProM. Using this plug-in, the discovered models are represented using Declare, a declarative process modelling language based on LTL for finite traces. In this paper, we use a combination of an Apriori algorithm and a group of algorithms for Sequence Analysis to improve the performances of the Declare Miner. Using synthetic and real life event logs, we show that the new implemented core of the plug-in allows for a significant performance improvement. © 2016 IEEE.
2016
20th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2016
Algorithm design and analysis; Business data processing; Data mining
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Apriori and sequence analysis for discovering declarative process models / Kala, Taavi; Maggi, FABRIZIO MARIA; DI CICCIO, Claudio; Di Francescomarino, Chiara. - (2016), pp. 50-58. (Intervento presentato al convegno 20th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2016 tenutosi a Vienna; Austria) [10.1109/EDOC.2016.7579378].
File allegati a questo prodotto
File Dimensione Formato  
Kala_Apriori_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 428.46 kB
Formato Adobe PDF
428.46 kB Adobe PDF   Contatta l'autore
Kala_Postprint_Apriori_2016.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/7579378
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 328.96 kB
Formato Adobe PDF
328.96 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1372949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 4
social impact