Apriori and Sequence Analysis for Discovering
Declarative Process Models

Taavi Kala, Fabrizio M. Maggi
University of Tartu, Estonia
Email: {kala,f.m.maggi}@ut.ce

Claudio Di Ciccio
Vienna University of
Economics and Business, Austria

Chiara Di Francescomarino
Fondazione Bruno Kessler, Italy
Email: dfmchiara@fbk.eu

Email: claudio.di.ciccio@wu.ac.at

Abstract—The aim of process discovery is to build a process
model from an event log without prior information about the
process. The discovery of declarative process models is useful
when a process works in an unpredictable and unstable envi-
ronment since several allowed paths can be represented as a
compact set of rules. One of the tools available in the literature
for discovering declarative models from logs is the Declare Miner,
a plug-in of the process mining tool ProM. Using this plug-in, the
discovered models are represented using Declare, a declarative
process modelling language based on LTL for finite traces. In this
paper, we use a combination of an Apriori algorithm and a group
of algorithms for Sequence Analysis to improve the performances
of the Declare Miner. Using synthetic and real life event logs, we
show that the new implemented core of the plug-in allows for a
significant performance improvement.

I. INTRODUCTION

Process mining is a family of techniques that allow for
the analysis of business processes. Its main focus lies in
the automatic retrieval and subsequent analysis of business
process models from event logs. Process mining consists
of discovery, enhancement and conformance checking [[L].
Discovery is the extraction of process models from an event
log. Enhancement is the extension or improvement of process
models using information extracted from a log. Conformance
checking consists in analysing whether the real executions of
a process, as recorded in a log, are compliant with a process
model of the same process [2].

The majority of process discovery algorithms try to con-
struct a procedural model. However, the resulting models
are often spaghetti-like and difficult to interpret especially
for processes working in unstable environments. Therefore,
when dealing with processes with high variability and where
multiple paths are allowed, declarative process models are
more effective than the imperative ones [3]], [4], [S]. Instead
of explicitly specifying all possible sequences of activities in
a process, declarative models implicitly specify the allowed
behaviour of the process with constraints, i.e., rules that must
be followed during the execution. In comparison to imperative
approaches, which produce ‘“closed” models (what is not
explicitly specified is forbidden), declarative languages are
“open” (everything that is not constrained is allowed). In
this way, models enjoy flexibility and still remain compact.
An example of a declarative process modelling language is
Declare, first introduced in [6].

The Declare Miner is a plug-in for the discovery of Declare
models from an event log included in the process mining tool
ProME] It implements a two-phase approach presented in [7]].
The first phase is based on the Apriori algorithm, developed by
Agrawal and Srikant for mining association rules [8]. During
this preliminary phase, the frequent sets of correlated activities
are identified. A list of candidate constraints is computed on
the basis of the correlated activity sets only. During the second
phase, the candidate constraints are checked by replaying the
log on specific automata, each accepting only those traces
that are compliant to one constraint. Each constraint among
the candidates becomes part of the discovered process only
if the percentage of traces accepted by the related automaton
exceeds a user-defined threshold. Constraints constituting the
discovered process are weighted according to their support,
i.e., the probability of such constraints to hold in the mined
process. To filter out irrelevant constraints, more metrics are
introduced, such as confidence and interest factor.

In this paper, we present an approach for the discovery of
Declare models that integrates the Apriori algorithm presented
in [8] with novel algorithms for Sequence Analysis, i.e.,
algorithms that, based on the analysis of the positioning of
events in a trace, are able to understand whether a Declare
constraint is satisfied in that trace or not. We evaluate the per-
formances of our approach using synthetic logs with different
characteristics and three real-life case studies and demonstrate
that the original Declare Miner performances are significantly
improved.

The paper is structured as follows. Section [[I] introduces
some background notions about process mining and Declare.
Section illustrates the proposed approach. Section
describes the experimental evaluation. Finally, Section [V] dis-
cusses related work and Section concludes the paper and
spells out directions for future work.

II. BACKGROUND

In this section, we provide a brief overview about the
main concepts used in this work. Section gives some
background about process mining. Section [[I-B| provides some
basic notions about Declare. In Section |[lI-C| we introduce a
running example we use throughout the paper.

Iwww.processmining.org

www.processmining.org

A. Process Mining

Process mining is still a rather young research discipline
which lies between data mining and computational intelligence
as well as process modelling and analysis. The general idea
of process mining is to discover, monitor and improve real
life processes by extracting knowledge from actual event logs
used in different systems that gather event data [I]. Over
the last ten years, event data have become more widely
available and process mining techniques have matured a lot.
Different process mining algorithms have been implemented
in academic and commercial systems. As there is in increasing
interest from industry in process mining, a growing number
of software vendors are adding functionalities that provide
process mining capabilities to their software and tools.

Process Mining mainly covers four different aspects:

e process discovery, which takes an event log and produces
a model without using any apriori information;

e conformance checking, which is used to compare an
existing process model with an event log;

o model extension, which is used to extend existing models
with information coming from logs;

e model repair, which is used to adapt an existing process
model based on the behaviour recorded in an event log.

The main guiding principles and the upcoming challenges of
such a recent research field have been reported in [2]. Purpose
of the principles is supporting in avoiding mistakes that can
be made when applying process mining in actual, real-life
settings. The challenges highlight relevant open issues that are
worth to be addressed in the future.

B. Declare Modelling Language

Recently, several works have investigated advantages and
disadvantages of using procedural or declarative process mod-
elling languages to describe a business process [4], [9]. The
results of these studies highlighted that the dichotomy pro-
cedural versus declarative reflects the nature of the process.
Procedural models like Petri nets, BPMN, and EPCs are
more suitable to support business processes working in stable
environments, in which participants have to follow predefined
procedures, since they suggest step by step what to do next.
In contrast, declarative process modelling languages, like
Declare, provide process participants with a (preferably small)
set of rules to be followed during the process execution. In this
way, process participants have the flexibility to follow any path
that does not violate these rules.

Declare is a declarative process modelling language intro-
duced in [6]. A Declare model consists of a set of constraints
applied to (atomic) activities. Constraints, in turn, are based
on templates. Templates are abstract parametrised patterns, and
constraints are their concrete instantiations on real activities.
Templates have a user-friendly graphical representation un-
derstandable to the user. Their semantics can be formalized
using different logics [10], the main one being LTL for finite
traces. Each constraint inherits the graphical representation
and semantics from its template. The major benefit of using

templates is that analysts do not have to be aware of the
underlying logic-based formalisation to understand the models.
They work with the graphical representation of templates,
while the underlying formulas remain hidden. Table [If reports
the main Declare templates, their formalization in LTL, their
graphical representation and a textual description. The reader
can refer to [S]] for a full description of the language.

Here, we indicate template parameters with capital letters
(see Table [) and real activities in their instantiations with
lower case letters (e.g., constraint O(a — (b)). A trace
(or case) is a sequence of events like (a,a,b,c). Declare
templates can be grouped in three main categories: existence
templates (first four rows of the table), which involve only
one event; relation templates (rows from 5 to 11), which
describe a dependency between two events; and negative
relation templates (last 5 rows), which describe a negative
dependency between two events.

Consider, for example, the response constraint ((a — Ob).
This constraint indicates that if a occurs, b must eventually
follow. Therefore, the response constraint is satisfied for traces
(a,a,b,c), (b,b,c,d) and (a,b,c,b). It is not satisfied for
(a,b,a,c), because the second occurrence of a is not followed
by a b in such a trace. An activation of a constraint in a trace is
an event whose occurrence imposes, because of that constraint,
some obligations on another event (the rule target) in the same
trace. For example, for the response constraint between a and
b, a is an activation, because the execution of a forces b to be
executed eventually. Event b is a target.

An activation of a constraint can be a fulfilment or a vio-
lation for that constraint. When a trace is perfectly compliant
with respect to a constraint, every activation of the constraint
in the trace leads to a fulfilment. Consider, again, the response
constraint O(a — Ob). In trace (a,a,b,c), the constraint is
activated and fulfilled twice, whereas, in trace (a, b, ¢, b), the
same constraint is activated and fulfilled only once. On the
other hand, when a trace is not compliant with respect to a
constraint, at least one activation leads to a violation. In trace
(a,b,a,c), for example, the response constraint (e — Ob)
is activated twice, but the first activation leads to a fulfilment
(eventually b occurs), whereas the second activation leads to a
violation (b does not occur subsequently). Finally, there exist
cases in which the constraint is not activated at all. Consider,
for instance, trace (b,b,c,d). The considered response con-
straint is satisfied in a trivial way because a never occurs. In
this case, we say that the constraint is vacuously satisfied [11]].
In [[12], the authors introduce the notion of behavioural vacuity
detection according to which a constraint is non-vacuously
satisfied in a trace when it is activated in that trace.

C. Running Example

As an example of a Declare model, we consider the fracture
treatment process reported in Fig. [I} It includes 8 activities:
examine patient (a), check X ray risk (b), perform X ray
(¢), perform reposition (d), apply cast (e), remove cast (f),
perform surgery (g), and prescribe rehabilitation (h). Its
behavior is specified by the following constraints C'1 - C7:

1y

3)
4)
5)
6)
7

TEMPLATE

FORMALIZATION

NOTATION

DESCRIPTION

existence(1,A)
existence(2,A)

existence(n,A)

OA
O(A A Ofexistence(l, A)))

<>(A A O(existence(n — 1, A)))

A has to occur at least once
A has to occur at least twice

A has to occur at least n times

absence(1,A)
absence(2,A)

absence(n,A)

—~0A

—existence(2, A)

—ezistence(n, A)

A can never happen
A can happen at most once

A can happen at most n-1 times

exactly(1,A)

existence(l, A) A absence(2, A)

n

A has to occur exactly once

exactly(2,A) existence(2, A) A absence(3, A) A has to occur exactly twice
exactly(n,A) existence(n, A) A absence(n + 1, A) A has to occur exactly n times
init Each instance has to start
init(A) A with the execution
of A
. If A occurs,
resp. existence(A,B) OA — OB H B must occur as well
If A occurs,
response(A.B) 0(A — 0B) H B must eventually follow
. B can occur only
precedence(A,B) -BW A H if A has occurred before
alternate If A occurs, B must
response(A.B) 0(A — O(-=Au B)) —— H eventually follow, without
P ? any other A in between
e CBw A (A s B o occured befor,withot
precedence(A,B) OB — O(=BW A)) any other B in between
. If A occurs,
chain response(A,B) 0 — OB) H B must ocour next
. B can occur only
chain precedence(A.B) O(OB — A) immediately after A
not resp. . If A occurs,
existence(A,B) 0A — 0B B cannot occur
o If A occurs, B cannot
not response(A,B) O(A — ~0B) B cventually follow
A cannot occur
not precedence(A,B) O(A — —0B) H before B
not chain If A occurs,
response(A,B) 0A - ﬁOB) N B cannot occur next
not chain 0(A ﬁOB) ==; H A cannot occur

precedence(A,B)

immediately before B

TABLE I: Graphical notation and LTL formalization of some Declare templates.

perform reposition

check X ray risk ——m7m—— perform X ray P
pri precedence

init

examine patient

e '—L

precedence

perform surgery

response

P prescribe rehabilitation

Fig. 1: The Declare model for a fracture treatment process.

init(examine patient)

alternate precedence(check X ray risk; perform X ray)
precedence(perform X ray; perform reposition)
precedence(perform X ray; apply cast)
succession(apply cast; remove cast)
precedence(perform X ray; perform surgery)
response(perform surgery; prescribe rehabilitation)

According to these constraints, every process instance starts
with activity examine patient. Moreover, if activity perform X
ray is performed, then check X ray risk must be performed
before it, without other executions of perform X ray in
between. Activities perform reposition, apply cast and perform
surgery require that perform X ray is executed before they

are executed. If perform surgery is performed, then prescribe
rehabilitation is performed eventually after it. Finally, after
every execution of apply cast, eventually remove cast is
executed and, vice versa, before every execution of remove
cast, apply cast must be performed.

III. APPROACH

The approach proposed in this paper aims at discovering
Declare constraints from an event log. The idea is to identify
and provide users with frequent constraints, i.e., constraints
that are fulfilled in a percentage of traces (in a log) higher than
a given threshold (suppmin). To this extent, it combines the
Apriori algorithm technique presented in [8], and Sequence
Analysis, i.e., a novel collection of algorithms that aim at
discovering declarative constraints by analysing how events
are positioned along traces.

The algorithm is composed of two phases. In the first phase,
a list of frequent activity sets is generated using the Apriori
algorithm. In the second phase, the frequent activity sets are
used to generate candidate Declare constraints (by instantiat-
ing Declare templates with those activities). These candidate
constraints are then pruned by only keeping those that are
frequently satisfied (identified through Sequence Analysis).

A. Phase 1: Apriori Algorithm

The Apriori algorithm [8] applied in the first phase of the
approach allows for the discovery of sets of activities occurring
frequently in the traces composing the log (frequent itemsets).
Let X be the set of activities available in the input event log
£. Let t € X* be a trace over 3, i.e., a sequence of activities
in 2. £ is a multi-set over X* (a trace can appear multiple
times in an event log). The support of a set of activities is a
measure that assesses the relevance of this set in an event log.

Definition 1: The support of an activity set A C ¥ in an
event log £ = [t1,ta,...,t,] is the ratio of traces in £ that
contain all the activities in A4, i.e.,

€4
supp(4) = i,

An activity set is considered to be frequent, if its support is
above a given threshold supp,,;». Let Ay denote the set of all
frequent activity sets of size k € N and let C} denote the set
of all candidate activity sets of size k that may potentially be
frequent. The Apriori algorithm starts by considering activity
sets of size 1 and progresses iteratively by considering activity
sets of increasing sizes in each iteration. The idea behind this
iterative algorithm is that it holds the property that any subset
of a frequent activity set must be frequent.

The set of candidate activity sets of size k + 1, Ci41,
is generated by joining relevant frequent activity sets from
Ag. Ck41 can be pruned efficiently using the property that
a relevant candidate activity set of size k + 1 cannot have
an infrequent subset. The activity sets in Cj; that have
a support above a given threshold supp,,;, constitute the
frequent activity sets of size k + 1 (Apy1) used in the next
iteration.

where £4 = [t € £|Vx € A,z € 1]

For instance, consider the running example of the fracture
process depicted in Fig. Let £ be an event log on the
alphabet ¥ = {a, b, c,d, e, f,g,h,i,j}, where a, ..., h are the
activities in the Declare model and ¢ and j are two further
activities that are not constrained by the Declare model in

Fig. [T}
£ :[(a,b,qj,b,b,d,a),(a,b,b,c,d,a),<a,b,b,i,i,a,c,d>,
<a7j7j767e>7<a7b’b7c7j7e’ f’b>:|

and suppose that supp.,;»=0.5.

The Apriori algorithm starts considering frequent activity
sets of size 1. C4, in Fig. fa) (table on the left), shows
the candidate activity sets of size 1 on the log £ and the
corresponding support values (supp). A; (table on the right)
shows the corresponding frequent activity sets (i.e., all the
activity sets with a support value higher than supp,in). The
candidate activity sets of size 2, Co, are then computed starting
from A;. Relying on the property that a relevant candidate
activity set cannot have an infrequent subset, only activity sets
on the alphabet £/{d, f, g, h, i} are generated. C», in Fig.[2|b)
(table on the left), shows the candidate activity sets of size 2
and the related support values (supp). A, (table on the right)
shows the list of the frequent activity sets (of size 2) that will
become the starting point for building C3, and so on. The
Apriori algorithm also allows for taking into account negative
events (non-occurrences). Such information might be useful
for inferring, for instance, events that are mutually exclusive,
e.g., if a occurs, then b does not occur.

The Apriori algorithm returns frequent activity sets, without
specifying what kind of relation exists between activities,
though. These relations are captured by Declare templates.
Therefore, for any frequent activity set {a,b}, constraints
such as response (J(a — b)) or precedence (—bWa) are
generated. We generate candidate constraints deriving from a
Declare template with k parameters a constraint instantiated
using the frequent activity sets of size k. In particular, we
instantiate each template by specifying as parameters all the
possible permutations of each frequent set. For instance, for
the frequent activity set {a,b}, we generate the response
constraints ((a — Ob) and O(b — Oa). It is worth noting
that, for different templates, we configure the Apriori algo-
rithm in different ways. For example, for relation templates,
we discover frequent activity sets including pairs of positive
events. On the other hand, for negative relation constraints,
also negative events are taken into consideration.

B. Phase 2: Sequence Analysis

After the list of candidate constraints has been generated in
Phase 1, a list of Declare constraints is extracted from it using
a group of algorithms for Sequence Analysis. Sequence Anal-
ysis aims at checking, for each candidate constraint, whether
a trace in the input log is compliant with the constraint, by
looking at the positioning of events in the trace. Only con-
straints frequently fulfilled in the log, are considered relevant
Declare constraints. Each Declare template demands for a

Candidate
Activity Sets
sSupp

Q

Frequent
Z 1805) Activity Sets
P 30 Ay | supp
7 50 a 100
e 40 80
7 20 c 80
g 0 d 60
h 0 J 60
3 20
J 60

a: Activity sets of size 1

Candidate
ACct1v1ty ieLts Frequent
2 2b} 8gp Activity Sets
a, c} 30 Az Supp
a:d} 50 {a,b 80
{a.7} | 00 e
{b, c} 80 ’,
{b,d} 60 {a,5} 60
{6.57 | 40 {b.c} | 80
{e.ar 0 {b,d} 60
{c.q} | %0 {ed) | 60
{d.g} | 20

b: Activity sets of size 2

Fig. 2: Candidate and frequent activity sets of size 1 and 2
(obtained by using suppmin = 50%). supp is expressed in %.

specific Sequence Analysis algorithm in charge of computing
the support of each candidate constraint (Suppconstr)-

Let £ be an event log on the alphabet > and constr a
constraint, i.e., an instantiation of a Declare template with
activities in Y. The support of the constraint is a measure
that assesses the relevance of the constraint in the event log.

Definition 2: The support of a constraint constr in an event
log £ = [t1,ta,...,1,] is the ratio of traces in £ in which the
constraint is fulfilled, i.e.,

|£constr|
el
where £.onstr = [t € £|constr is fulfilled in ¢

SUPPconstr =

Also in this case, a constraint constr is considered to be
frequent if its support is greater than the given threshold
SUPPmin -

In particular, for each template, a specific Sequence Analysis
algorithm has been implemented. Each of these algorithms re-
quires as input a candidatelList, i.e., the list of candidate
constraints generated in the previous step. The event log is
replayed by the algorithms and, each event in each trace of
the log is processed and analysed. Based on the position in
the sequence of activities in the trace, the specific Sequence
Analysis algorithm assesses whether a candidate constraint
is fulfilled or not by the trace. Once all the events in the
log have been processed, only the candidate constraints with
SUPDconstr greater than the minimum support supp,q, are

Algorithm 1: Sequence Analysis for response

Input: candidateList, the list of candidate constraints from Phase 1;
e = (c, a, t) the current event to be processed (c is the case id of the event, a is
the activity name, ¢ is the timestamp)
if fulfilledCases is not defined then
L define map fullfilledCases ;

B

w

if pendingActivations is not defined then
| define map pendingActivations ;

IS

s foreach (k1, ks2) in candidateList do

6 if ko == a then
7 L pendingActivations.put((ki,a),0) ;
8 else if k1 == a then

acts < pendingActivations.get((a, k2)) ;
pendingActivations.put((a, k2), acts + 1) ;

9
10

11 if isLastEvent(e,c) then
12 L acts < pendingActivations.get((k1, k2)) ;
13 if acts == 0 then

cases < fulfilledCases.get((k1, k2)) ;
fulfilledCases.put((k1i, k2), cases + 1) ;

14
15

kept and presented to the user.

Finally, the discovered constraints can be filtered in order to
leave out vacuously satisfied constraints. If vacuity detection
is enabled only constraints that are activated and satisfied
frequently will be discovered. If vacuity detection is disabled,
also vacuously satisfied constraints will be discovered. For
instance, consider again the log £ of the running example. By
applying the Sequence Analysis algorithm for the precedence
template to the constraint =cWd, it results to be satisfied
in the first four traces. Therefore, the support value for this
constraint will be suppconstr = 0.8, which is greater than
suppmin- Hence, the precedence constraint —c¢ W d will be
discovered by the algorithm. If vacuity detection is enabled,
only the first three traces of the log £ are counted for
SUPPconstr, Which is, in this case, 0.6 and still higher than
SUPPmin-

The Sequence Analysis algorithms for response, precedence
and existence templates are briefly presented in the following.
Note that the algorithms for negative relation templates can
be trivially derived from the algorithms for the corresponding
positive relation templates (for instance, the fulfillments for a
succession constraint are violations for the corresponding not
succession constraint and vice versa).

a) Sequence Analysis for response: The semantics of
the response constraint (e — Ob) can be defined as “if a
occurs, b must eventually follow”. The pseudo-code for the
response algorithm is reported in Algorithm [T} It takes as
input the candidateList of activity pairs from Phase 1 and
the current event to be processed. It first initializes the vari-
ables: in particular, it initializes the maps fulfilledCases
(for storing the cases in which each candidate constraint
is satisfied) and pendingActivations (for storing the
activations of each candidate constraint that are still pending).
For each pair in candidateList, (k1, ko), (i) if the current
event corresponds to the second element of the activity pair
(ko), all pending activations of response(ki;ks) are satis-
fied and, hence, the number of pending activations related

Algorithm 2: Sequence Analysis for precedence

Input: candidateList, the list of candidate constraints from Phase 1;
e = (c, a, t) the event to be processed (c is the case id of the event, a is
the activity name, ¢ is the timestamp)
if fulfilledCases is not defined then
L define map fullfilledCases ;

[

w

if activityFrequencies is not defined then
L define map activityFrequencies ;

IS

o

if fulfilledActivatons is not defined then
L define map fulfilledActivatons ;

N

<

if activityFrequencies.constaintsKey(a) then
L freq < activityFrequencies.get(a) ;

e

activityFregencies.put(a, freq + 1) ;

10 forall (k1, k2) in candidateList do

11 if ko == a && activityFrequencies.get(ky1) > 0 then
12 acts < fulfilledActivations.get((a, k2)) ;

13 fulfilledActivations.put((a, k2), acts + 1) ;

14 if isLastEvent(e,c) then
15 acts < fulfilledActivations.get((k1, k2));
16 if acts == activityFrequecies.get(ks) then

cases < fulfilledCases.get((k1, k2)) ;
fulfilledCases.put((k1, k2), cases + 1) ;

17
18

to response(ki;ks) is set to 0; (ii) if, the current event
corresponds to the first event of the pair of activities (ky),
then the number of pending activations for response(ky; ks)
is incremented by 1 (a new constraint activation has occurred
that demands for an occurrence of ks to fulfill the constraint).
When the last event is reached, if (and only if) the number of
pending activations of a candidate constraint is 0, then the case
is added to the map of fulfilledCases for that constraint.

b) Sequence Analysis for precedence: The semantics of
the precedence constraint (—=bW a) can be defined as “b can
occur only if a has occurred before”. Algorithm [2] reports the
pseudo-code for the precedence algorithm. It takes as input
the candidateList of activity pairs from Phase 1 and the
current event to be processed. It first initializes the variables:
in particular, it initializes the maps fulfilledCases (for
storing the cases in which each candidate constraint is satis-
fied), activityFrequencies (for storing the frequency of
each activity in the log) and fulfilledActivations (for
storing the activations of each candidate constraint that have
been fulfilled). The frequency of the activity corresponding to
event e is then increased by 1 in activityFrequencies.
For each pair in candidatelist, (ki,ke), if the current
event corresponds to the second element of the activity pair
(k2) and the first element of the pair (k1) has occurred at least
once before, i.e., it has a frequency greater than 0, the number
of fulfilled activations of the constraint precedence(ky; k) is
incremented by 1. When the last event is reached, for each
candidate constraint, if the number of fulfilled activations is
the same as the number of occurrences of ko (none of these
occurrences has caused a violation of the constraint), the case
is added to the map of fulfilledCases for that constraint.

c) Sequence Analysis for existence (exactly and ab-
sence): The existence constraint existence(n,a) can be
described as “a is executed at least n times”. Similarly,
absence(n,a) means “a is executed at most n — 1 times”.

Algorithm 3: Sequence Analysis for existence (exactly and
absence)

Input: candidateList, the list of candidate constraints from Phase 1;
e = (¢, a, t) the event to be processed (c is the case id of the event, a is the
activity name, ¢ is the timestamp)
if fulfilledCases is not defined then
L define map fullfilledCases ;

(ST

if activityFrequencies is not defined then
L define map activityFrequencies ;

& oW

o

if activityFrequencies.containsKey(a) then

6 freq <— activityFrequencies.get(a);

7 activityFrequencies.put(a, freq + 1) ;
8 forall k in candidateList do

9 if isLastEvent then

10 acts <— activityFrequencies.get(k) ;
11 if existenceCondition(acts) then

12 cases <— fulfilledCases.get(k) ;
13 fulfilledCases.put(k, cases + 1) ;

Finally, exactly(n,a) is defined as “a is executed exactly n
times”. Algorithm [3] shows the pseudo-code for the existence,
exactly and absence algorithms. Their implementations differ
based on the existenceCondition function. They take as
input the candidateList from Phase 1 (which, in this
case, is the list of all the activities in the input log) and
the current event to be processed. It first initializes the vari-
ables: in particular, it initializes the maps fulfilledCases
(for storing the cases in which each candidate constraint
is satisfied) and activityFrequencies (for storing the
frequency of each activity in the log). The frequency of the
activity corresponding to event e is then increased by 1 in
activityFrequencies. For each candidate constraint in
candidateList, if the last event of the case is reached
and the existenceCondition is verified, the case is added
to the map of fulfilledCases for that constraint. The
existenceCondition differs based on the specific template of
the Sequence Analysis:

o existence(a,n) - the frequency of a must be greater than
or equal to n,

o absence(a,n) - the frequency of a must be at most n—1,

e exactly(a,n) - the frequency of a must be exactly n.

C. Implementation

The proposed approach has been implemented and is ac-
cessible through a command line interface. It is available as
a JAR file, which makes it easier its integration into Java
applications. The application provides the functionalities of the
Declare Miner plug-in, though offering significantly improved
performances.

The application takes as input a configuration file where
to specify (i) the path of the log file to be processed; (ii)
the templates specifying which type of constraints are to be
discovered; (iii) the value of the minimum support used for
filtering activity sets and candidate constraints (SuUpp.m,in); (iv)
the flag in charge of enabling or disabling vacuity detection;
(v) the output path and the output file type (e.g., XML, text or
an ad-hoc format for reporting the discovered constraints in a

human readable format). In particular, the human-readable for-
mat version of the output also reports information about simple
and logical sentences to convey the constraints’ essence,
the witnesses (cases in which each discovered constraint is
activated and satisfied), counterexamples (cases in which each
discovered constraint is violated) and vacuous cases.

IV. EVALUATION

We evaluated the proposed approach (referred to as SEQ.
W/ APRIORI) in terms of time performances. To this purpose,
we took as benchmarks: (i) the Declare Miner, which uses
the Apriori algorithm and automata (referred to as AUT. W/
APRIORI); and (ii) the approach based on the only Sequence
Analysis (SEQUENCE), and we compared the execution times
of these approaches. We describe the datasets in Section
and the procedure we used for the evaluation in Section
Finally, we discuss the results in Section

A. Datasets

Two types of datasets have been used for the evaluation: (i)
synthetic logs, in order to compare the approaches in terms
of time performances when using event logs with different
characteristics; and (ii) real-life logs that were provided for
the BPI Challenges in years 2012, 2013 and 2014.

1) Synthetic Logs: Synthetic logs have been generated
using the generator described in [13], [14] and simulating the
Declare model we have used as running example (Fig. [I). The
log generator allows for the generation of logs of specified
size (s), containing traces of a given length (I) and built on
an alphabet of a given size (|X]).

The synthetic logs generated for the evaluation have size
s € {400, 800,1600, 3200,6400}, contain traces of length
[€ {16,24,32,40,48} and are built on an alphabet ¥ of
size |X| € {8,16,24,32,40,48} (the smallest one being the
alphabet of the running example ¥ = {a,b,c,d,e, f,g,h}).
In particular, the following different configurations have been
applied for the generation of synthetic logs (only one of the
three parameters is changed per time, while keeping the others
constant):

1) I =24, |¥] =8 and s € {400,800, 1600, 3200, 6400},

thus generating 5 logs of different size;

2) s = 800, |X| = 8 and [€ {16,24,32,40,48}, thus

generating 5 logs with traces of different length;

3) 1 =24, s =800 and |X| € {8, 16,24, 32, 40,48}, thus

generating 6 logs built on alphabets of increasing size.

2) BPI Challenge Logs: The BPI Challenge logs are real-
life logs used in the BPI Challenge competition. In particular,
the BPI Challenge 2012 log [15] pertains to an application
process for personal loans or overdrafts within a Dutch finan-
cial Institute; the BPI Challenge 2013 log [16]] is related to
an incident management process supported by a system called
VINST in use at Volvo IT Belgium; and the BPI Challenge
2014 log [17] pertains to the management of calls or mails
from customers to the Service Desk concerning disruptions of
ICT-services from Rabobank Group ICT. Table [I] reports the
statistics related to the three BPI Challenge logs.

Log Traces Events Alphabet size
BPI2012 13,087 262,200 36
BPI2013 7,554 65,533 14
BPI2014 46,616 466,737 39

TABLE II: Statistics for the BPI Challenge logs.

B. Procedure

For the synthetic logs the tests have been run using config-
urations where supp,;n is set to 80% and with both enabled
and disabled vacuity detection. For the BPI Challenge logs,
instead, vacuity detection was enabled and three different
values for supp,.;, were considered: suppm., = 80%,
SUPPmin = 90%, sSuppmin = 100%. The tests have been run
on a Ubuntu Linux 12.04 server machine, equipped with Intel
Xeon CPU E5-2650 v2 2.60GHz, using 1 64-bit CPU core
and 16GB main memory quota.

Both (i) the number of discovered constraints and (ii) the
time required for the discovery have been collected for each
log and configuration. The time E] has been averaged on five
runs and reported in milliseconds.

C. Results

The constraints discovered by the presented technique are
exactly the same as the ones produced by the two benchmarks,
while differences exist in terms of performances. In the fol-
lowing, we detail these differences for each of the investigated
logs, by showing that SEQ. W/ APRIORI outperforms the other
two approaches with both synthetic and real-life logs.

1) Synthetic Logs: Synthetic logs have been used to investi-
gate the time performances of the three approaches when using
event logs with different characteristics. The three analyses re-
ported below show that overall SEQ. W/ APRIORI significantly
improves the performances of the AUT. W/ APRIORI approach
and that performs better than the SEQUENCE approach.

a) Varying Log Size: Fig. E] reports the plots related to
the time performances of AUT. W/ APRIORI, SEQUENCE and
SEQ. W/ APRIORI when varying the log size. In case of vacuity
detection enabled (Fig.[3a), SEQ. W/ APRIORI and SEQUENCE
perform significantly better than AUT. W/ APRIORI and SEQ.
W/ APRIORI is faster than the other two approaches. Moreover,
the difference in terms of performances increases as the size of
the log increases. When vacuity detection is disabled (Fig. [3b)),
almost the same trend can be observed. However, in this case,
while the performances of SEQ. W/ APRIORI and SEQUENCE
register only small variations, the performances of the AUT. W/
APRIORI become much worse than the case in which vacuity
detection is enabled.

b) Varying Trace Length: Fig. [reports the execution
times of the three approaches when varying the trace lengths.
As for the previous case, SEQ. W/ APRIORI significantly

2The time required for the log import has been excluded from the elabo-
ration time.

3Note that for a better readability of the plots, times are reported on a
logarithmic scale.

° .
00,000
80,000 '6'2 , %
2 . 8
E0.000 ® Computation [E100,000 ® Computation
) © Aut. w/ Apriori) © Aut. w/ Apriori
£ @ Sequence £ o Sequence
'=20,000 Seq. w/ Apriori pat 40,000 Seq. w/ Apriori
k<] ° S L
8 T 20,000
510,000 >
£ £
g £ 10000
O 5,000 O
5,000

L N N N PP L N N
S S S S S S
LN PN) o7 LN oV) o7

Traces in log Traces in log

(a) With vacuity detection (b) Without vacuity detection

Fig. 3: Computation time as a function of the log size.

@ @ ® °
80,000 e 80,000 g
$40,000 ©40,000{ ®
é Computation é Computation
g @ %éu(. w/ Apriori g %éul. w/ Apriori
C} equence equence
520,000 < Seq. w/ Apriori 520,000 < Seq. w/ Apriori
S S
=1 =1
£10,000 g
2 210,000
£ £
]]
O 5,000 ©
5,000
16 2 32 40 48 16 2 32 40 48

4 4
Events per trace Events per trace

(a) With vacuity detection (b) Without vacuity detection

Fig. 4: Computation time as a function of the traces length.

outperforms AUT. W/ APRIORI and is faster than SEQUENCE.
Also in this case, while for SEQ. W/ APRIORI and SEQUENCE
there are no significant differences in terms of performances
when vacuity detection is enabled (Fig. [da) or disabled
(Fig. D)), vacuity detection has an impact on the performances
in the AUT. W/ APRIORI case for short traces (traces with size
up to about 25 events).

¢) Varying Alphabet Size: Fig.[5]shows the time required
by the three approaches when varying the alphabet size.
Overall, when vacuity detection is enabled (Fig. @), SEQ.
W/ APRIORI performs significantly better than the other two
approaches for different alphabet sizes. Alphabets of large
size, indeed, are very costly for SEQUENCE. On the other
hand, although AUT. W/ APRIORI seems to gain in terms
of performances as the alphabet size increases, it is not
able to outperform the other two approaches. When vacuity
detection is disabled (Fig. @) a different trend, instead, can
be observed. In this case, the required time increases as the
alphabet size increases for all the three approaches and, for
small alphabets (|X| < 32), the performance of SEQ. W/
APRIORI is slightly better than the one of the SEQUENCE
approach only.

2) BPI Challenges: Table reports the execution times
required to process the three real life logs for different values
of suppp,in and with vacuity detection enabled. The results
show that overall the time required by SEQ. W/ APRIORI is

o e Computation ®
© Aut. w/ Apriori @

1,200,000

520,000 o 00,0001 | FZequence |

8 o @l 8 eo0000 9. W AP

£ Computation £, 300000

® € Aut. w/ Apriori 5} '

£ fSequence [— £

S10,000] [£Sed. wi Apriori | Lo & = 120,000

gl W S 790,000

E i 5 o000|g

E o 2 30,000

e |7 £

) LJ/ ° 10000

6 24 32 40 48 8§ 16 24 32 40 48
Alphabet size Alphabet size
(a) With vacuity detection (b) Without vacuity detection

Fig. 5: Computation time as a function of the alphabet size.

Computation time [msec]

Log Min.supp
Aut.w/Apriori ~ Sequence Seq.w/Apriori
BPI 80% 90,255 70,759 12,360
2012 90% 101,811 72,471 12,898
100% 84,581 70,304 11,634
BPI 80% 6,625 11,561 3,311
2013 90% 6,792 11,714 3,140
100% 6,506 10,987 2,689
BPI 80% 1,388,797 177,181 27,093
2014 90% 707,082 179,939 28,755
100% 51,568 175,971 16,965

TABLE III: Computation time needed to mine BPI logs.

always significantly lower than the time required by the other
two approaches, ranging from a minimum of c.a. 3 seconds for
the BPI Challenge 2013 log to a maximum of c.a. 29 seconds
for the BPI Challenge 2014 log. By looking at the other two
approaches, instead, the trend is less stable. While for the BPI
Challenge 2012 log and for the BPI Challenge 2014 with
SUPPmin = 80% and suppmin = 90%, SEQUENCE outper-
forms AUT. W/ APRIORI, for the BPI Challenge 2013 dataset
and for the BPI Challenge 2014 with supp,in = 100%, the
performances of AUT. W/ APRIORI are better than those of
SEQUENCE. Moreover, despite some exceptions (e.g., AUT.
w/ APRIORI for the BPI Challenge 2014 dataset), the time
required by all the three approaches for different values of
SUPPmin does not vary significantly.

V. RELATED WORK

Different approaches have been proposed so far for mining
declarative process models. Some of them belong to the
group of the probabilistic process mining approaches. For
instance, Statistical Relational Learning has been used for
learning from process traces labelled as compliant or non-
compliant, declarative constraints expressed as ICs (Integrity
Constraints) [18]]. A logic-based approach for probabilistic
process mining enhancing this approach is presented in [19]].

An approach that makes use of logical programming for
declarative process mining is presented in [20]. The proposed
methodology is based on Inductive Logical Programming

(ICL). The ICL algorithm, used in this approach, is adapted
to the problem of learning integrity constraints in SCIFF and
is able to learn a model by considering both compliant and
non-compliant traces.

An algorithm to discover declarative workflows was devel-
oped in [21] using email messages as event log traces. The
implemented algorithm, MINERful, is described as a two-step
algorithm [22]. The first step aims at building a knowledge
base starting from existing traces. The second step aims at
computing the statistical support of constraints by querying
the knowledge base.

An online process discovery technique which takes data
from online streams is presented in [23]. The proposed frame-
work is able to produce at runtime an updated picture of the
process behavior in terms of Declare constraints. It also gives
meaningful information about the concept drifts that occurred
during the process execution to the user.

VI. CONCLUSION

Although existing solutions for declarative process mining
are currently actively used and widely recognised, there is
still room for improvement. In this work, one of the existing
solutions for the discovery of declarative process models, the
Declare Miner plug-in of the process mining tool ProM has
been enhanced. In particular, the proposed solution combines
the Apriori algorithm and a group of algorithms for Sequence
Analysis to improve its performances. Results on both syn-
thetic and real use cases show that the proposed approach
significantly improves the performances of the original version
of the Declare Miner.

In the future, we aim at investigating the possibility of
using this approach for repairing existing models, as well as to
extend it to support additional perspectives such as time and
data.

ACKNOWLEDGMENT

This research has been partially carried out within the
EU FP7 Programme under grant agreement 609190 (Subject-
Orientation for People-Centred Production) and within the
Euregio IPN12 KAOS, which is funded by the “European
Region Tyrol-South Tyrol-Trentino” (EGTC) under the first
call for basic research projects.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2] W. M. P. v. d. Aalst and et al, “Process mining manifesto,” in BPM 2011
Workshops, Part I, vol. 99. Springer-Verlag, 2012, pp. 169-194.

[3] S. Zugal, J. Pinggera, and B. Weber, “The impact of testcases on the
maintainability of declarative process models,” in BMMDS/EMMSAD,
2011, pp. 163-177.

[4] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A.
Reijers, “Imperative versus declarative process modeling languages: An
empirical investigation,” in BPM Workshops, 2011, pp. 383-394.

[5] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Sci-
ence - R&D, vol. 23, no. 2, pp. 99-113, 2009.

[6] M. Pesic, “Constraint-Based Workflow Management Systems: Shifting
Control to Users,” Ph.D. dissertation, TU/e, 2008.

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]
[18]
[19]

[20]

(21]

[22]

(23]

F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient
discovery of understandable declarative process models from event logs,”
in CAiISE, 2012, pp. 270-285.

R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in VLDB. Morgan Kaufmann, 1994, pp. 487—499.
H. A. Reijers, T. Slaats, and C. Stahl, “Declarative modeling—an
academic dream or the future for BPM?” in BPM 2013, 2013, vol.
8094, pp. 307-322.

M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari, “Declarative Specification and Verification of Service
Choreographies,” ACM Transactions on the Web, vol. 4, no. 1, 2010.
O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model
checking.” in CHARME 1999, vol. 1703, 1999, pp. 82-96.

A. Burattin, F. Maggi, W. van der Aalst, and A. Sperduti, “Techniques
for a posteriori analysis of declarative processes,” in EDOC 2012, 2012,
pp. 41-50.

C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of Declare models,” in EOMAS, 2015.
C. Di Ciccio, M. Mecella, and J. Mendling, “The effect of noise on
mined declarative constraints,” in Data-Driven Process Discovery and
Analysis, 2015, vol. 203, pp. 1-24.

B. van Dongen, “BPI challenge 2012,” 2012. [Online]. Available: http:
//dx.doi.org/10.4121/uuid:3926db30-1712-4394-aebc-75976070e9 11|

W. Steeman;, “BPI challenge 2013, closed prob-
lems,” 2013. [Online]. Available: |http://dx.doi.org/10.4121/uuid:
c2c3b154-ab26-4b31-a0e8-8f2350ddacl 1

B. van Dongen;, “BPI challenge 2014,” 2014. [Online]. Available: http:
//dx.doi.org/10.4121/uuid:c3e5d 162-0cfd-4bb0-bd82-af5268819¢35

E. Bellodi, F. Riguzzi, and E. Lamma, “Probabilistic declarative process
mining,” in KSEM 2010, vol. 6291, 2010, pp. 292-303.

E. Bellodi, F. Riguzzi, and E. Lamma, “Probabilistic logic-based process
mining,” in CILC2010, vol. 598, 2010.

F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari,
“Exploiting inductive logic programming techniques for declarative
process mining,” ToPNoC II, vol. 5460, pp. 278-295, 2009.

C. Di Ciccio and M. Mecella, “Mining artful processes from knowledge
workers’ emails,” IEEE Internet Computing, vol. 17, no. 5, pp. 10-20,
September 2013.

C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Manage. Inf. Syst., vol. 5, no. 4,
pp. 24:1-24:37, January 2015.

F. M. Maggi, A. Burattin, M. Cimitile, and A. Sperduti, “Online
process discovery to detect concept drifts in Itl-based declarative process
models,” in OTM 2013 Conferences, 2013, vol. 8185, pp. 94-111.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
http://dx.doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

	Introduction
	Background
	Process Mining
	Declare Modelling Language
	Running Example

	Approach
	Phase 1: Apriori Algorithm
	Phase 2: Sequence Analysis
	Implementation

	Evaluation
	Datasets
	Synthetic Logs
	BPI Challenge Logs

	Procedure
	Results
	Synthetic Logs
	BPI Challenges

	Related Work
	Conclusion
	References

