This paper aims to provide a nonparametric analysis of the integrated processes of an integer order, via a theoretical solution of a generalized eigenvalue problem. To this end, we introduce a mean operator for the process, by using weights belonging to a Sobolev Space.

This paper aims to provide a nonparametric analysis of the integrated processes of an integer order, via a theoretical solution of a generalized eigenvalue problem. To this end, we introduce a mean operator for the process, by using weights belonging to a Sobolev Space. © 2008 Elsevier B.V. All rights reserved.

On the asymptotic behaviour of random matrices in a multivariate statistical model / Cerqueti, R.; Costantini, M.. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 78:14(2008), pp. 2039-2045. [10.1016/j.spl.2008.01.051]

On the asymptotic behaviour of random matrices in a multivariate statistical model

Cerqueti R.;Costantini M.
2008

Abstract

This paper aims to provide a nonparametric analysis of the integrated processes of an integer order, via a theoretical solution of a generalized eigenvalue problem. To this end, we introduce a mean operator for the process, by using weights belonging to a Sobolev Space. © 2008 Elsevier B.V. All rights reserved.
2008
This paper aims to provide a nonparametric analysis of the integrated processes of an integer order, via a theoretical solution of a generalized eigenvalue problem. To this end, we introduce a mean operator for the process, by using weights belonging to a Sobolev Space.
Generalized Eigenvalues Problem; Sobolev Spaces; Asymptotic Convergence
01 Pubblicazione su rivista::01a Articolo in rivista
On the asymptotic behaviour of random matrices in a multivariate statistical model / Cerqueti, R.; Costantini, M.. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 78:14(2008), pp. 2039-2045. [10.1016/j.spl.2008.01.051]
File allegati a questo prodotto
File Dimensione Formato  
SPL.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 219.17 kB
Formato Adobe PDF
219.17 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1364941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact