Aims: Ventilation vs. carbon dioxide production (VE/VCO2) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13–83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 < 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 < 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance.

Aims: Ventilation vs. carbon dioxide production (VE/VCO2 ) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13-83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 < 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 < 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance.

Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction / Salvioni, E; Corrà, U; Piepoli, M; Rovai, S; Correale, M; Paolillo, S; Pasquali, M; Magrì, Damiano; Vitale, G; Fusini, L; Mapelli, M; Vignati, C; Lagioia, R; Raimondo, R; Sinagra, G; Boggio, F; Cangiano, L; Gallo, G; Magini, A; Contini, M; Palermo, P; Apostolo, A; Pezzuto, B; Bonomi, A; Scardovi, Ab; Filardi, Pp; Limongelli, G; Metra, M; Scrutinio, D; Emdin, M; Piccioli, L; Lombardi, C; Cattadori, G; Parati, G; Caravita, S; Re, F; Cicoira, M; Frigerio, M; Clemenza, F; Bussotti, M; Battaia, E; Guazzi, M; Bandera, F; Badagliacca, R; Di Lenarda, A; Pacileo, G; Passino, C; Sciomer, S; Ambrosio, G; Agostoni, P; MECKI score research, Group.. - In: ESC HEART FAILURE. - ISSN 2055-5822. - 7:1(2020), pp. 368-377. [10.1002/ehf2.12582]

Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction

Magrì Damiano;Mapelli M;Gallo G;Bonomi A;Limongelli G;Metra M;Piccioli L;Caravita S;Guazzi M;Badagliacca R;Sciomer S;
2020

Abstract

Aims: Ventilation vs. carbon dioxide production (VE/VCO2) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13–83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 < 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 < 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance.
2020
Aims: Ventilation vs. carbon dioxide production (VE/VCO2 ) is among the strongest cardiopulmonary exercise testing prognostic parameters in heart failure (HF). It is usually reported as an absolute value. The current definition of normal VE/VCO2 slope values is inadequate, since it was built from small groups of subjects with a particularly limited number of women and elderly. We aimed to define VE/VCO2 slope prediction formulas in a sizable population and to test whether the prognostic power of VE/VCO2 slope in HF was different if expressed as a percentage of the predicted value or as an absolute value. Methods and results: We calculated the linear regressions between age and VE/VCO2 slope in 1136 healthy subjects (68% male, age 44.9 ± 14.5, range 13-83 years). We then applied age-adjusted and sex-adjusted formulas to predict VE/VCO2 slope to HF patients included in the metabolic exercise test data combined with cardiac and kidney indexes score database, which counts 6112 patients (82% male, age 61.4 ± 12.8, left ventricular ejection fraction 33.2 ± 10.5%, peakVO2 14.8 ± 4.9, mL/min/kg, VE/VCO2 slope 32.7 ± 7.7) from 24 HF centres. Finally, we evaluated whether the use of absolute values vs. percentages of predicted VE/VCO2 affected HF prognosis prediction (composite of cardiovascular mortality + urgent transplant or left ventricular assist device). We did so in the entire cardiac and kidney indexes score population and separately in HF patients with severe (peakVO2 &lt; 14 mL/min/kg, n = 2919, 61.1 events/1000 pts/year) or moderate (peakVO2 ≥ 14 mL/min/kg, n = 3183, 19.9 events/1000 pts/year) HF. In the healthy population, we obtained the following equations: female, VE/VCO2 = 0.052 × Age + 23.808 (r = 0.192); male, VE/VCO2 = 0.095 × Age + 20.227 (r = 0.371) (P = 0.007). We applied these formulas to calculate the percentages of predicted VE/VCO2 values. The 2-year survival prognostic power of VE/VCO2 slope was strong, and it was similar if expressed as absolute value or as a percentage of predicted value (AUCs 0.686 and 0.690, respectively). In contrast, in severe HF patients, AUCs significantly differed between absolute values (0.637) and percentages of predicted values (0.650, P = 0.0026). Moreover, VE/VCO2 slope expressed as a percentage of predicted value allowed to reclassify 6.6% of peakVO2 &lt; 14 mL/min/kg patients (net reclassification improvement = 0.066, P = 0.0015). Conclusions: The percentage of predicted VE/VCO2 slope value strengthens the prognostic power of VE/VCO2 in severe HF patients, and it should be preferred over the absolute value for HF prognostication. Furthermore, the widespread use of VE/VCO2 slope expressed as percentage of predicted value can improve our ability to identify HF patients at high risk, which is a goal of utmost clinical relevance.
cardiopulmonary exercise test; heart failure; prognosis; ventilation efficiency
01 Pubblicazione su rivista::01a Articolo in rivista
Gender and age normalization and ventilation efficiency during exercise in heart failure with reduced ejection fraction / Salvioni, E; Corrà, U; Piepoli, M; Rovai, S; Correale, M; Paolillo, S; Pasquali, M; Magrì, Damiano; Vitale, G; Fusini, L; Mapelli, M; Vignati, C; Lagioia, R; Raimondo, R; Sinagra, G; Boggio, F; Cangiano, L; Gallo, G; Magini, A; Contini, M; Palermo, P; Apostolo, A; Pezzuto, B; Bonomi, A; Scardovi, Ab; Filardi, Pp; Limongelli, G; Metra, M; Scrutinio, D; Emdin, M; Piccioli, L; Lombardi, C; Cattadori, G; Parati, G; Caravita, S; Re, F; Cicoira, M; Frigerio, M; Clemenza, F; Bussotti, M; Battaia, E; Guazzi, M; Bandera, F; Badagliacca, R; Di Lenarda, A; Pacileo, G; Passino, C; Sciomer, S; Ambrosio, G; Agostoni, P; MECKI score research, Group.. - In: ESC HEART FAILURE. - ISSN 2055-5822. - 7:1(2020), pp. 368-377. [10.1002/ehf2.12582]
File allegati a questo prodotto
File Dimensione Formato  
Salvioni_Gender_2020.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1364182
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
social impact