We study the Morse index of self-shrinkers for the mean curvature flow and, more generally, of f-minimal hypersurfaces in a weighted Euclidean space endowed with a convex weight. When the hypersurface is compact, we show that the index is bounded from below by an affine function of its first Betti number. When the first Betti number is large, this improves index estimates known in literature. In the complete non- compact case, the lower bound is in terms of the dimension of the space of weighted square summable f-harmonic 1-forms; in particular, in dimension 2, the procedure gives an index estimate in terms of the genus of the surface.

Index and first Betti number of f-minimal hypersurfaces and self-shrinkers / Impera, Debora; Rimoldi, Michele; Savo, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - (2019), pp. 1-24. [10.4171/RMI/1150]

Index and first Betti number of f-minimal hypersurfaces and self-shrinkers

Alessandro Savo
2019

Abstract

We study the Morse index of self-shrinkers for the mean curvature flow and, more generally, of f-minimal hypersurfaces in a weighted Euclidean space endowed with a convex weight. When the hypersurface is compact, we show that the index is bounded from below by an affine function of its first Betti number. When the first Betti number is large, this improves index estimates known in literature. In the complete non- compact case, the lower bound is in terms of the dimension of the space of weighted square summable f-harmonic 1-forms; in particular, in dimension 2, the procedure gives an index estimate in terms of the genus of the surface.
2019
f-minimal hypersurfaces, self-shrinkers, index estimates, Betti number, genus
01 Pubblicazione su rivista::01a Articolo in rivista
Index and first Betti number of f-minimal hypersurfaces and self-shrinkers / Impera, Debora; Rimoldi, Michele; Savo, Alessandro. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - (2019), pp. 1-24. [10.4171/RMI/1150]
File allegati a questo prodotto
File Dimensione Formato  
RMI.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 314.1 kB
Formato Adobe PDF
314.1 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1362905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact