Let V⊂ CPn be an irreducible complex projective variety of complex dimension v and let g be the Kähler metric on reg (V) , the regular part of V, induced by the Fubini–Study metric of CPn. In (J Am Math Soc 8:857–877, 1995) Li and Tian proved that W01,2(reg(V),g)=W1,2(reg(V),g), that the natural inclusion W1 , 2(reg (V) , g) ↪ L2(reg (V) , g) is a compact operator and that the heat operator associated with the Friedrich extension of the scalar Laplacian Δ0:Cc∞(reg(V))→Cc∞(reg(V)), that is, e-tΔ0F:L2(reg(V),g)→L2(reg(V),g), is a trace class operator. The goal of this paper is to provide an extension of the above result to the case of Sobolev spaces of sections and symmetric Schrödinger type operators with potential bounded from below where the underlying Riemannian manifold is the regular part of a complex projective variety endowed with the Fubini–Study metric or the regular part of a stratified pseudomanifold endowed with an iterated edge metric.
Sobolev Spaces and Bochner Laplacian on Complex Projective Varieties and Stratified Pseudomanifolds / Bei, F.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 27:1(2017), pp. 746-796. [10.1007/s12220-016-9697-8]
Sobolev Spaces and Bochner Laplacian on Complex Projective Varieties and Stratified Pseudomanifolds
Bei F.
2017
Abstract
Let V⊂ CPn be an irreducible complex projective variety of complex dimension v and let g be the Kähler metric on reg (V) , the regular part of V, induced by the Fubini–Study metric of CPn. In (J Am Math Soc 8:857–877, 1995) Li and Tian proved that W01,2(reg(V),g)=W1,2(reg(V),g), that the natural inclusion W1 , 2(reg (V) , g) ↪ L2(reg (V) , g) is a compact operator and that the heat operator associated with the Friedrich extension of the scalar Laplacian Δ0:Cc∞(reg(V))→Cc∞(reg(V)), that is, e-tΔ0F:L2(reg(V),g)→L2(reg(V),g), is a trace class operator. The goal of this paper is to provide an extension of the above result to the case of Sobolev spaces of sections and symmetric Schrödinger type operators with potential bounded from below where the underlying Riemannian manifold is the regular part of a complex projective variety endowed with the Fubini–Study metric or the regular part of a stratified pseudomanifold endowed with an iterated edge metric.File | Dimensione | Formato | |
---|---|---|---|
Bei_postprint_Sobolev_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
595.15 kB
Formato
Adobe PDF
|
595.15 kB | Adobe PDF | |
Bei_Sobolev_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.11 MB
Formato
Unknown
|
1.11 MB | Unknown | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.