Let (M,g) be an open, oriented and incomplete Riemannian manifold of dimension m. Under some general conditions we show the existence of a Hilbert complex (L2ωi(M,g),d,i) such that its cohomology groups, labeled with H2,i(M,g), satisfy the following properties: H2,i(M,g) =ker(dmax,i)/im(dmin,i) H2,i(M,g)=H 2,m-i(M,g) (Poincaré duality holds) There exists a well-defined and nondegenerate pairing: H2,i(M,g) × H 2,m-i(M,g), M If (L2ωi(M,g),d,i) is a Fredholm complex, then every closed extension of the de Rham complex (ωci(M),d i) is a Fredholm complex and, for each i = 0,..,m, the quotient (dmax,i)/(dmin,i) is a finite dimensional vector space.
On the L 2-Poincaré duality for incomplete Riemannian manifolds: A general construction with applications / Bei, F.. - In: JOURNAL OF TOPOLOGY AND ANALYSIS. - ISSN 1793-5253. - 8:1(2016), pp. 151-186. [10.1142/S1793525316500060]
On the L 2-Poincaré duality for incomplete Riemannian manifolds: A general construction with applications
Bei F.
2016
Abstract
Let (M,g) be an open, oriented and incomplete Riemannian manifold of dimension m. Under some general conditions we show the existence of a Hilbert complex (L2ωi(M,g),d,i) such that its cohomology groups, labeled with H2,i(M,g), satisfy the following properties: H2,i(M,g) =ker(dmax,i)/im(dmin,i) H2,i(M,g)=H 2,m-i(M,g) (Poincaré duality holds) There exists a well-defined and nondegenerate pairing: H2,i(M,g) × H 2,m-i(M,g), M If (L2ωi(M,g),d,i) is a Fredholm complex, then every closed extension of the de Rham complex (ωci(M),d i) is a Fredholm complex and, for each i = 0,..,m, the quotient (dmax,i)/(dmin,i) is a finite dimensional vector space.File | Dimensione | Formato | |
---|---|---|---|
Bei_postprint_On-the-L2-Poincaré_duality_2016.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
565.48 kB
Formato
Adobe PDF
|
565.48 kB | Adobe PDF | |
Bei_On-the-L2-Poincaré_duality_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
397.15 kB
Formato
Adobe PDF
|
397.15 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.