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Abstract

Let (M, g) be an open, oriented and incomplete riemannian manifold of dimension m.
Under some general conditions we show the existence of a Hilbert complex (L2Ωi(M, g), dM,i)
such that its cohomology groups, labeled with Hi

2,M(M, g), satisfy the following properties:

• Hi
2,M(M, g) = ker(dmax,i)/ im(dmin,i)

• Hi
2,M(M, g) ∼= Hm−i

2,M (M, g) (Poincaré duality holds)

• There exists a well defined and non degenerate pairing:

Hi
2,M(M, g)×Hm−i

2,M (M, g) −→ R, ([ω], [η]) 7−→
∫
M

ω ∧ η

• If (L2Ωi(M, g), dM,i) is a Fredholm complex then every closed extension of the de
Rham complex (Ωi

c(M), di) is a Fredholm complex and, for each i = 0, ...,m, the
quotient D(dmax,i)/D(dmin,i) is a finite dimensional vector space.

Keywords: L2-cohomology, Poincaré duality, Incomplete riemannian manifolds, Fredholm
complexes.

Mathematics subject classification: 58J10, 14F40, 14F43.

Introduction

Poincaré duality is one of the best known and most important properties of the de Rham
cohomology on a closed and oriented smooth manifold M . Using the pairing induced by the
wedge product we have:

Hi
dR(M)×Hm−i

dR (M) −→ R, ([ω], [η]) 7−→
∫
M

ω ∧ η. (1)

Poincaré duality says that (1) induces an isomorphism between Hi
dR(M) and (Hm−i

dR (M))∗ for
all i = 0, ...,m, where m is the dimension of M . Besides the previous isomorphism, putting a
riemannian metric g on M and using the results coming from Hodge theory, we have also the
following isomorphisms:

Hi
dR(M) ∼= ker(∆i) ∼= ker(∆m−i) ∼= Hm−i

dR (M) (2)

where ∆i := di−1 ◦ δi−1 + δi ◦ di is the i−th Hodge Laplacian acting on Ωi(M). As it is well
known (1) and (2) are not longer true when M is not compact.
In this case two natural and important variations of the de Rham cohomology are provided
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by the L2-de Rham cohomology and by the reduced L2-de Rham cohomology. We recall briefly

that the reduced maximal L2-cohomology, H
i

2,max(M, g), is defined as ker(dmax,i)/im(dmax,i−1)

while the maximal L2-cohomology, Hi
2,max(M, g), is defined as ker(dmax,i)/ im(dmax,i−1) where

dmax,i : L2Ωi(M, g) → L2Ωi+1(M, g) is the distributional extension of di : Ωic(M) → Ωic(M).

Analogously the reduced minimal L2-cohomology, H
i

2,min(M, g), is defined taking the quo-

tient ker(dmin,i)/im(dmin,i−1) while the minimal L2-cohomology, Hi
2,min(M, g), is defined as

ker(dmin,i)/ im(dmin,i−1) where dmin,i : L2Ωi(M, g) → L2Ωi+1(M, g) is the graph closure of
di : Ωic(M) → Ωic(M). In the non compact setting they are an important tool and indeed
they have been the subject of many studies during the last decades. In this case, as it is well
known, the completeness of (M, g) plays a fundamental role. When (M, g) is complete, the
Laplacian ∆i, with domain given by the smooth and compactly supported forms Ωic(M), is an
essentially self-adjoint operator on L2Ωi(M, g). In particular this implies that Poincaré duality
holds for the reduced L2-cohomology of (M, g). Therefore, when the L2-cohomology is finite
dimensional, it coincides with the reduced L2-cohomology and so it satisfies Poincaré dual-
ity. All these properties in general fail when (M, g) is incomplete. Generally in this case the
differential di acting on smooth i−forms with compact support admits several different closed
extensions when we look at it as an unbounded operator between L2Ωi(M, g) and L2Ωi+1(M, g).
Therefore, depending on the closed extensions considered, we will get different L2-cohomology
groups and L2-reduced cohomology groups for which, in general, Poincaré duality does not
hold. However open and incomplete riemannian manifolds appear naturally in the context of
riemannian geometry and in that of global analysis, in particular when we deal with spaces
with ”singularities” such as stratified pseudomanifolds or singular complex (or real) algebraic
varieties. Therefore it is an interesting question to investigate some general constructions for
the L2-cohomology of (M, g), when g is incomplete, such that suitable versions of (1) and (2)
are satisfied or, briefly, such that Poincaré duality holds. In the literature other papers have
dealt with this question: for example we mention [1], [5] and [7].
This paper is organized in the following way: The first chapter is devoted to Hilbert complexes.
As explained by Brüning and Lesch in [7] this is the natural framework to describe the general
properties of an elliptic complex from an L2 point of view. We start recalling from [7] the main
properties and definitions and then we prove some abstract results about Poincaré duality for
Hilbert complexes.
In the second section, after recalled the notion of L2-de Rham cohomology, we apply the results
of the first chapter to the case of the L2-de Rham complex. We can summarize our main results
in the following way:

Theorem 0.1. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-
mension m. Then, for each i = 0, ...,m, we have the following isomorphism:

ker(dmax,i)/im(dmin,i−1) ∼= ker(dmax,m−i)/im(dmin,m−i−1).

Assume now that, for each i = 0, ...,m, im(dmin,i) is closed in L2Ωi+1(M, g). Then there
exists a Hilbert complex (L2Ωi(M, g)), dM,i) which satisfies the following properties for each
i = 0, ...,m:

• D(dmin,i) ⊆ D(dM,i) ⊆ D(dmax,i), that is dmax,i is an extension of dM,i which is an
extension of dmin,i.

• im(dM,i) is closed in L2Ωi+1(M, g).

• If we call Hi
2,M(M, g) the cohomology of the Hilbert complex (L2Ωi(M, g), dM,i) then we

have:
Hi

2,M(M, g) = ker(dmax,i)/ im(dmin,i)

and
Hi

2,M(M, g) ∼= Hm−i
2,M (M, g).

• There exists a well defined and non degenerate pairing:

Hi
2,M(M, g)×Hm−i

2,M (M, g) −→ R, ([ω], [η]) 7−→
∫
M

ω ∧ η.
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Then we prove that:

Theorem 0.2. Under the assumptions of Theorem 0.1. Consider the Hilbert complexes:

0← L2(M, g)
δmax,0← L2Ω1(M, g)

δmax,1← L2Ω2(M, g)
δmax,2← ...

δmax,n−1← L2Ωn(M, g)← 0, (3)

and

0← L2(M, g)
δmin,0← L2Ω1(M, g)

δmin,1← L2Ω2(M, g)
δmin,2← ...

δmin,n−1← L2Ωn(M, g)← 0 (4)

Let

0← L2(M, g)
δM,0← L2Ω1(M, g)

δM,1← L2Ω2(M, g)
δM,2← ...

δM,n−1← L2Ωn(M, g)← 0 (5)

be the intermediate complex, which extends (4) and which is extended by (3), built according
to Theorem 0.1. Then, for each i = 0, ...,m, we have:

d∗M,i = δM,i = ± ∗ dM,i∗ (6)

where d∗M,i is the adjoint of dM,i and ∗ is the Hodge star operator.

Moreover we prove the following result:

Theorem 0.3. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-
mension m. Suppose that, for each i = 0, ...,m, im(dmin,i) is closed in L2Ωi+1(M, g). Let
(L2Ωi(M, g), dM,i) be the Hilbert complex built in Theorem 0.1. Assume that (L2Ωi(M, g), dM,i)
is a Fredholm complex. Then:

1. Every closed extension (L2Ωi(M, g), Di) of (Ωic(M), di) is a Fredholm complex.

2. For every i = 0, ...,m the quotient of the domain of dmax,i with the domain of dmin,i,
that is

D(dmax,i)/D(dmin,i)

is a finite dimensional vector space.

According to Theorem 0.3, we define the following number associated to (M, g):

ψL2(M, g) :=

m∑
i=0

(−1)i dim(D(dmax,i)/D(dmin,i)) (7)

and we prove the following formula:

Theorem 0.4. Under the hypotheses of Theorem 0.3. The following formula holds:

ψL2(M, g) = χ2,M (M, g)− χ2,m(M, g) =

{
0 dim(M) is even
2χ2,M (M, g) dim(M) is odd

(8)

where χ2,M (M, g) and χ2,m(M, g) are the Euler characteristics associated respectively to the
complexes (L2Ωi(M, g), dmax,i) and (L2Ωi(M, g), dmin,i).

In the remaining part of the second chapter and in the third one we prove other results for
the complex (L2Ωi(M, g), dM,i). In particular we prove a Hodge type theorem for the coho-
mology groups Hi

2,M(M, g), we introduce the L2−Euler characteristic χ2,M(M, g) associated

to (L2Ωi(M, g), dM,i) and the L2−signature σ2,M(M, g) for (M, g) when dim(M) = 4l. Then
we show that they are the index of some suitable Fredholm operators arising from the complex
(L2Ωi(M, g), dM,i). Finally the last part of the paper contains some examples and applications
of the previous results.
We conclude this introduction mentioning that in a subsequent paper we plan to come back
again on this subject investigating some topological properties of the vector spaces Hi

2,M(M, g)
with particular attention to the cases when they are finite dimensional.

Acknowledgments. I wish to thank Jochen Brüning for many interesting discussions and
helpful hints. I also wish to thank Pierre Albin, Erich Leichtnam, Rafe Mazzeo and Paolo
Piazza for interesting comments and emails. This research has been financially supported by
the SFB 647 : Raum-Zeit-Materie.
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1 Hilbert Complexes

We start the section recalling the notion of Hilbert complex and its main properties. For a
complete development of the subject we refer to [7].

Definition 1.1. A Hilbert complex is a complex, (H∗, D∗) of the form:

0→ H0
D0→ H1

D1→ H2
D2→ ...

Dn−1→ Hn → 0, (9)

where each Hi is a separable Hilbert space and each map Di is a closed operator called the
differential such that:

1. D(Di), the domain of Di, is dense in Hi.

2. im(Di) ⊂ D(Di+1).

3. Di+1 ◦Di = 0 for all i.

The cohomology groups of the complex are Hi(H∗, D∗) := ker(Di)/ im(Di−1). If the groups
Hi(H∗, D∗) are all finite dimensional we say that the complex is a Fredholm complex.

Given a Hilbert complex there is a dual Hilbert complex

0← H0
D∗0← H1

D∗1← H2
D∗2← ...

D∗n−1← Hn ← 0, (10)

defined using D∗i : Hi+1 → Hi, the Hilbert space adjoint of the differential Di : Hi → Hi+1.
The cohomology groups of (Hj , (Dj)

∗), the dual Hilbert complex, are

Hi(Hj , (Dj)
∗) := ker(D∗n−i−1)/ im(D∗n−i).

An important self-adjoint operator associated to (9) is the following one: let us label H :=⊕n
i=0Hi and let

D +D∗ : H → H (11)

be the self-adjoint operator with domain

D(D +D∗) =

n⊕
i=0

(D(Di) ∩ D(D∗i−1))

and defined as

D +D∗ :=

n⊕
i=0

(Di +D∗i−1).

Moreover, for all i, there is also a Laplacian ∆i = D∗iDi + Di−1D
∗
i−1 which is a self-adjoint

operator on Hi with domain

D(∆i) = {v ∈ D(Di) ∩ D(D∗i−1) : Div ∈ D(D∗i ), D∗i−1v ∈ D(Di−1)} (12)

and nullspace:
Hi(H∗, D∗) := ker(∆i) = ker(Di) ∩ ker(D∗i−1). (13)

The following propositions are well known. The first result is the weak Kodaira decompo-
sition:

Proposition 1.1. [[7], Lemma 2.1] Let (Hi, Di) be a Hilbert complex and (Hi, (Di)
∗) its dual

complex, then:
Hi = Hi ⊕ im(Di−1)⊕ im(D∗i ). (14)

The reduced cohomology groups of the complex are:

H
i
(H∗, D∗) := ker(Di)/(im(Di−1)).
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By the above proposition there is a pair of weak de Rham isomorphism theorems:{
Hi(Hj , Dj) ∼= H

i
(Hj , Dj)

Hi(Hj , Dj) ∼= H
n−i

(Hj , (Dj)
∗)

(15)

where in the second case we mean the cohomology of the dual Hilbert complex.
The complex (H∗, D∗) is called weakly Fredholm if Hi(H∗, D∗) is finite dimensional for each i.
By the next propositions we get immediately that each Fredholm complex is a weak Fredholm
complex.

Proposition 1.2. [[7], corollary 2.5] If the cohomology of a Hilbert complex (H∗, D∗) is finite
dimensional then, for all i, im(Di−1) is closed and Hi(H∗, D∗) ∼= Hi(H∗, D∗).

Proposition 1.3. The following properties are equivalent:

1. (9) is a Fredholm complex.

2. The operator defined in (11) is a Fredholm operator on its domain endowed with the graph
norm.

3. For all i = 0, ..., n ∆i : D(∆i)→ Hi is a Fredholm operator on its domain endowed with
the graph norm.

Proof. See [7] Theorem 2.4

Proposition 1.4. [[7], corollary 2.6] A Hilbert complex (Hj , Dj), j = 0, ..., n is a Fredholm
complex (weakly Fredholm) if and only if its dual complex, (Hj , D

∗
j ), is Fredholm (weakly Fred-

holm). In the Fredholm case we have:

Hi(Hj , Dj) ∼= Hi(Hj , Dj) ∼= Hn−i(Hj , (Dj)
∗) ∼= Hn−i(Hj , (Dj)

∗). (16)

Analogously in the weak Fredholm case we have:

Hi(Hj , Dj) ∼= H
i
(Hj , Dj) ∼= H

n−i
(Hj , (Dj)

∗) ∼= Hn−i(Hj , (Dj)
∗). (17)

Now we recall some definitions from [5]. We refer to the same paper for more properties
and comments.

Definition 1.2. Consider a pair of Hilbert complexes (Hi, Di) and (Hi, Li) with i = 0, ..., n.
The pair (Hi, Di) and (Hi, Li) is said to be complementary if the following property is
satisfied:

• for each i there exists an isometry φi : Hi −→ Hn−i such that φi(D(Di)) = D(L∗n−i−1)
and L∗n−i−1 ◦ φi = Ci(φi+1 ◦ Di) on D(Di) where L∗n−i−1 : Hn−i −→ Hn−i−1 is the
adjoint of Ln−i−1 : Hn−i−1 −→ Hn−i and Ci 6= 0 is a constant which depends only on i.

We call the maps φi duality maps.

We have the following proposition:

Proposition 1.5. Let (Hi, Di) and (Hi, Li) be complementary Hilbert complexes. Then:

1. Also (Hi, Li) and (Hi, Di) are complementary Hilbert complexes. Moreover if {φi} are
the duality maps which make (Hi, Di) and (Hi, Li) complementary then {φ∗i }, the family
obtained taking the adjoint maps, are the duality maps which make (Hi, Li) and (Hi, Di)
complementary.

2. Each φj induces an isomorphism between Hj(H∗, D∗) and Hn−j(H∗, L∗).

3. The complexes (Hi, Di) and (Hi, L
∗
i ) have isomorphic cohomology groups and isomorphic

reduced cohomology groups. In the same way the complexes (Hi, Li) and (Hi, D
∗
i ) have

isomorphic cohomology groups and isomorphic reduced cohomology groups.

4. The following isomorphism holds: H
j
(H∗, D∗) ∼= H

n−j
(H∗, L∗).

5



Proof. See [5] Prop. 5.

Finally, given a pair of Hilbert complexes (Hj , Dj) and (Hj , D
′
j), we will write (Hj , Dj) ⊆

(Hj , D
′
j) if, for each j, D′j extends Dj . We will write (Hj , Dj) ⊂ (Hj , D

′
j) if Dj 6= D′j for at

least one j. We are now in position to prove the main results of this section:

Theorem 1.1. Let (Hj , Dj) ⊆ (Hj , Lj) be a pair of complementary Hilbert complexes. Then,
for every j = 0, ..., n, we have the following isomorphism:

ker(Lj)/(im(Dj−1)) ∼= ker(Ln−j)/(im(Dn−j−1)). (18)

Proof. The fact that Lj is an extension of Dj implies that, the complex below is well defined
for each j = 0, ..., n

0→ H0
D0→ H1

D1→ ...
Dj−1→ Hj

Lj→ ...
Ln−1→ Hn → 0. (19)

The dual Hilbert complex is clearly:

0← H0
D∗0← ...

D∗j−1← Hj

L∗j← ...
L∗n−1← Hn ← 0, (20)

Therefore, by (13) and (15), we get that:

ker(Lj)/(im(Dj−1)) ∼= ker(Lj) ∩ ker(D∗j−1). (21)

By Def. 1.2 and Prop. 1.5 we know that φn−j induces an isomorphism between ker(Lj) and
ker(D∗n−j−1) and between ker(Ln−j) and ker(D∗j−1). Therefore it induces an isomorphism
between ker(Lj) ∩ ker(D∗j−1) and ker(D∗n−j−1) ∩ ker(Ln−j). In this way, using (21), we get:

ker(Lj)/(im(Dj−1)) ∼= ker(Lj) ∩ ker(D∗j−1) ∼=

∼= ker(D∗n−j−1) ∩ ker(Ln−j) ∼= ker(Ln−j)/(im(Dn−j−1))

and this completes the proof.

Theorem 1.2. Let (Hj , Dj) ⊆ (Hj , Lj), j = 0, ..., n, be a pair of Hilbert complexes. Suppose
that, for each j, im(Dj) is closed in Hj+1. Then there exists a third Hilbert complex (Hj , Pj)
such that:

1. (Hj , Dj) ⊆ (Hj , Pj) ⊆ (Hj , Lj) and the image of Pj is closed for each j.

2. Hj(H∗, P∗) = ker(Lj)/(im(Dj−1)).

3. If (Hj , Dj) ⊆ (Hj , Lj) are complementary then:

Hj(H∗, P∗) ∼= Hn−j(H∗, P∗).

Proof. To prove the first part of the proposition we have to exhibit a Hilbert complex which
satisfies the assertions of the statement. To do this consider the following Hilbert space

(D(Lj), 〈 , 〉G)

which is by definition the domain of Lj endowed with the graph scalar product, that is for
each pair of elements u, v ∈ D(Lj) we have

〈u, v〉G := 〈u, v〉Hj
+ 〈Lju, Ljv〉Hj+1

.

During the rest of the proof we will work with this Hilbert space and therefore all the direct
sums that will appear and all the assertions of topological type are referred to this Hilbert
space (D(Lj), 〈 , 〉G). We can decompose (D(Lj), 〈 , 〉G) in the following way:

(D(Lj), 〈 , 〉G) = ker(Lj)⊕ Vj (22)

where Vj = {α ∈ D(Lj) ∩ im(L∗j )} and it is immediate to check that these subspaces are both
closed in (D(Lj), 〈 , 〉G).
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Consider now (D(Dj), 〈 , 〉G); it is a closed subspace of (D(Lj), 〈 , 〉G) and we can decompose
it as

(D(Dj), 〈 , 〉G) = ker(Dj)⊕Aj . (23)

By the assumption on the range of Dj we get that also the range of D∗j is closed. So, analogously
to the previous case, Aj = {α ∈ D(Dj)∩im(D∗j )} and obviously these subspaces are both closed
in (D(Dj), 〈 , 〉G). Clearly if ker(Dj) = ker(Lj) then the Hilbert complex (Hj , Dj) satisfies the
first two properties of the statement, that is defining (Hj , Pj) as (Hj , Dj), we have (Hj , Dj) ⊆
(Hj , Pj) ⊆ (Hj , Lj), the image of Pj is closed for each j and Hj(H∗, P∗) = ker(Lj)/(im(Dj−1)).
So we can suppose that ker(Dj) is properly contained in ker(Lj). Let π1,j be the orthogonal
projection of Aj onto ker(Lj) and analogously let π2,j be the orthogonal projection of Aj onto
Vj . We have the following properties:

1. π2,j is injective

2. im(π2,j) is closed.

The first property follows from the fact that ker(π2,j) = Aj ∩ ker(Lj). But Lj is an extension
of Dj ; therefore if an element α lies in Aj ∩ ker(Lj) then it lies also in ker(Dj) and so α = 0
because ker(Dj)∩Aj = {0}. For the second property consider a sequence {γm}m∈N ⊂ Aj such
that π2,j(γm) converges to γ ∈ Vj . We recall that we are in (D(Lj), 〈 , 〉G) and therefore this
means that

lim
m→∞

π2,j(γm) = γ in Hj and lim
m→∞

Lj(π2,j(γm)) = Lj(γ) in Hj+1.

Then
lim
m→∞

Dj(γm) = lim
m→∞

Lj(γm) = lim
m→∞

Lj(π2,j(γm)) = Lj(γ).

This implies that
lim
m→∞

Dj(γm) = Lj(γ)

and therefore the limit exists. So by the assumptions about the range of Dj we get that there
exists an element η ∈ Aj such that

lim
m→∞

Dj(γm) = Dj(η).

Moreover Lj(γ) = Dj(η) = Lj(η) = Lj(π2,j(η)). This implies that Lj(π2,j(η) − γ) = 0 and
therefore π2,j(η) = γ because π2,j(η), γ ∈ Vj and Li is injective on Vj . In this way we have
shown that im(π2,j) is closed.
Now define Nj as the range of π2,j . Finally define Wj as the vector space generated by the
sum of ker(Lj) and Nj . By the fact that ker(Lj) and Nj are orthogonal to each other we have
Wj = ker(Lj)⊕Nj and therefore Wj is closed in (D(Lj), 〈 , 〉G). Finally define Pj as

Pj := Lj |Wj
(24)

By the fact that Wj is closed in D(Lj) and that π1,j(Aj), π2,j(Aj) ⊂ Wj we get that Pj is a
closed extension of Dj which is in turn extended by Lj . Moreover, by the construction, it is
clear that ker(Pj) = ker(Lj). Finally, again by the definition of Pj and its domain, we have
im(Pj) = Lj(π2,j(Aj)) = im(Dj). Therefore we got that im(Pj) is closed and that

ker(Pj)/ im(Pj−1) = ker(Lj)/ imDj−1.

This completes the proof of the first two statements.
Finally, combining the second statement of this Theorem with Theorem 1.1, the third statement
follows.

For the dual complex of (Hi, Pi) we have the following description:

Theorem 1.3. Under the hypotheses of Theorem 1.2. Assume moreover that the image of Li,
im(Li), is closed for each i = 0, ..., n. Consider the Hilbert complexes:

0← H0
D∗0← H1

D∗1← H2
D∗2← ...

D∗n−1← Hn ← 0, (25)
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and

0← H0
L∗0← H1

L∗1← H2
L∗2← ...

L∗n−1← Hn ← 0. (26)

Let

0← H0
S0← H1

S1← H2
S2← ...

Sn−1← Hn ← 0 (27)

be the intermediate complex, which extends (26) and which is extended by (25), constructed
according to Theorem 1.2 (and its proof). Then, for each i = 0, ..., n, we have:

P ∗i = Si. (28)

Furthermore assume that (Hi, Di) and (Hi, Li) are complementary (in this case the fact that
im(Di) is closed implies that im(Li) is closed). Let {φi} be the duality maps and suppose that
φ−1
i = ±φn−i. Then we have:

Si = C−1
i φ−1

i ◦ Pn−i−1 ◦ φi+1 = ±C−1
i φn−i ◦ Pn−i−1 ◦ φi+1. (29)

In order to prove Theorem 1.3 we need the following proposition:

Proposition 1.6. Let H and K be two Hilbert spaces and let T : H → K be a closed and
densely defined operator. Let S : H → K be another closed and densely defined operator which
extends T . Assume that ker(T ) = ker(S) and im(T ) = im(S). Then:

T = S

that is D(T ) = D(S) and T (u) = S(u) for each u ∈ D(S).

Proof. Consider the Hilbert space (D(S), 〈 , 〉G). As in the proof of Theoren 1.2 we can
decompose it as (D(S), 〈 , 〉G) = ker(S) ⊕ A where A = D(S) ∩ im(S∗). Analogously, if we
consider (D(T ), 〈 , 〉G), then we have (D(T ), 〈 , 〉G) = ker(T )⊕B where B = D(T ) ∩ im(T ∗).
By the fact that D(T ) ⊆ D(S) and ker(S) = ker(T ) we get that B ⊆ A. Now let u ∈ A. Then
there exists v ∈ B such that S(u) = T (v). Therefore, by the fact that S extends T , we have
S(u − v) = 0 and this implies that u = v because (u − v) ∈ ker(S) ∩ A. So we can conclude
that S = T .

Proof. (of Theorem 1.3). First of all we remark that we can apply Theorem 1.2 to the pair of
complexes (25) and (26). Clearly (25) extends (26); moreover, having assumed that im(Li) is
closed, it follows that im(L∗i ) is closed. In this way the assumptions of Theorem 1.2 are fulfilled.
Now, by Theorem 1.2 and its proof, we know that im(Pi) is closed for each i = 0, ..., n. Therefore
also im(P ∗i ) is closed for each i = 0, ..., n and we have im(P ∗i ) = (ker(Pi))

⊥ = (ker(Li))
⊥ =

im(L∗i ). In the same way ker(P ∗i ) = (im(Pi))
⊥ = (im(Di))

⊥ = ker(D∗i ). Now, if we consider
Si, again by Theorem 1.2 and its proof, we have im(Si) = im(L∗i ), ker(Si) = ker(D∗i ) and
in particular im(Si) is closed. Therefore, according to Prop. 1.6, in order to prove (28) it is
enough to show that P ∗i extends Si. To do this we have to show that:

〈Pi(u), v〉Hi+1
= 〈u, Si(v)〉Hi

(30)

for each u ∈ D(Pi) and for each v ∈ D(Si). We start observing that we can decompose u
as u1 + u2 where u1 ∈ ker(Pi) and u2 ∈ D(Pi) ∩ im(P ∗i ). Analogously v = v1 + v2 where
v1 ∈ ker(Si) and v2 ∈ D(Si) ∩ im(S∗i ). So we get 〈Pi(u), v〉Hi+1 = 〈Pi(u2), v2〉Hi+1 because
0 = Pi(u1) and Pi(u2) ∈ im(Di) which is orthogonal to ker(D∗i ) = ker(Si). By the proof of
Theorem 1.2 we know that Pi(u2) = Di(w) for a unique element w ∈ D(Di) ∩ im(D∗i ). There-
fore 〈Pi(u2), v2〉Hi+1

= 〈Di(w), v2〉Hi+1
= 〈w,D∗i (v2)〉Hi

= 〈w, Si(v2)〉Hi
because v2 ∈ D(Si) ⊂

D(D∗i ) and D∗i |D(Si) = Si. Now, using the projections π1,i and π2,i defined in the proof of
Theorem 1.2 we can decompose w as π1,i(w) + π2,i(w) where π1,i(w) is the projection of w on
ker(Li) and π2,i(w) is the projection of w on D(Li) ∩ im(L∗i ).
We have that π2,i(w) = u2 because π2,i(w) − u2 ∈ ker(Li) ∩ (D(Li) ∩ im(L∗i )) = {0}. There-
fore we get 〈w, Si(v2)〉Hi

= 〈π1,i(w) + u2, Si(v2)〉Hi
. Now by the fact that Si(v1) = 0 and

〈z, Si(v2)〉Hi = 0 for each z ∈ ker(Li) we get 〈π1,i(w) + u2, Si(v2)〉Hi = 〈u2, Si(v2) + Si(v1)〉Hi

= 〈u1 + u2, Si(v2) + Si(v1)〉Hi = 〈u, Si(v)〉Hi . Summarizing all the passages we have:

〈Pi(u), v〉Hi+1 = 〈Pi(u2), v2〉Hi+1 = 〈Di(w), v2〉Hi+1 = 〈w,D∗i (v2)〉Hi
= 〈w, Si(v2)〉Hi

=
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= 〈π1,i(w) + π2,i(w), Si(v2)〉Hi = 〈π1,i(w) + u2, Si(v2)〉Hi = 〈u2, Si(v2) + Si(v1)〉Hi =

= 〈u1 + u2, Si(v2) + Si(v1)〉Hi
= 〈u, Si(v)〉Hi

and this completes the proof of (28).
Now we prove (29). We start recalling that

D(Si) = ker(D∗i )⊕ π2,i+1(D(L∗i ) ∩ im(Li)) (31)

and
D(Pn−i−1) = ker(Ln−i−1)⊕ π2,n−i−1(D(Dn−i−1) ∩ im(D∗n−i−1)) (32)

where, as defined in the proof of Theorem 1.2, in (31) π2,i+1 is the projection

π2,i+1 : D(L∗i ) ∩ im(Li) −→ D(D∗i ) ∩ im(Di) (33)

and in (32) π2,n−i−1 is the projection

π2,n−i−1 : D(Dn−i−1) ∩ im(D∗n−i−1) −→ D(Ln−i−1) ∩ im(L∗n−i−1). (34)

Therefore, in order to avoid any confusion, during the rest of the proof we will label with πS2,i+1

the projection (33) and with πP2,n−i−1 the projection (34). First of all, in order to establish
(29), we need to prove that

φi+1(D(Si)) = D(Pn−i−1).

This is equivalent to show that

φi+1(ker(D∗i )) = ker(Ln−i−1) (35)

and that

φi+1(πS2,i+1(D(L∗i ) ∩ im(Li))) = πP2,n−i−1(D(Dn−i−1) ∩ im(D∗n−i−1)) (36)

By the fact that Ci(φi+1 ◦Di) = L∗n−i−1 ◦ φi we get

Ci(D
∗
i ◦ φ−1

i+1) = φ−1
i ◦ Ln−i−1 (37)

and this implies immediately (35).
Now to establish (36) we need to prove that φi+1(D(L∗i )∩ im(Li)) = D(Dn−i−1)∩ im(D∗n−i−1)
and that πP2,n−i−1 ◦ φi+1 = φi+1 ◦ πS2,i+1.
Consider again Ci(φi+1 ◦Di) = L∗n−i−1 ◦ φi. It follows immediately that

φi(D(Di)) = D(L∗n−i−1). (38)

This implies thatD(Di) = φ−1
i (D(L∗n−i−1)) which in turn implies thatD(Di) = φn−i(D(L∗n−i−1))

or equivalently D(Dn−i−1) = φi+1(D(L∗i )).
Taking again Ci(φi+1 ◦Di) = L∗n−i−1 ◦ φi, we get Ci(D

∗
i ◦ φn−i−1) = ±φn−i ◦ Ln−i−1 that is

Cn−i−1(D∗n−i−1 ◦ φi) = ±φi+1 ◦ Li. In this way we get that φi+1(im(Li)) = im(D∗n−i−1). So
we can conclude that:

φi+1(D(L∗i ) ∩ im(Li)) = D(Dn−i−1) ∩ im(D∗n−i−1).

Now, to complete the proof of (36), we have to show that (φi+1◦πS2,i+1)(u) = (πP2,n−i−1◦φi+1)(u)
for each i = 0, ..., n and for each u ∈ D(L∗i ) ∩ im(Li). Let u ∈ D(L∗i ) ∩ im(Li). Then:

φi+1(u) = πP1,n−i−1(φi+1(u)) + πP2,n−i−1(φi+1(u)) (39)

where, as defined in the proof of Theorem 1.2, πP1,n−i−1 is the projection

πP1,n−i−1 : D(Dn−i−1) ∩ im(D∗n−i−1) −→ ker(Ln−i−1).

On the other hand:
φi+1(u) = φi+1(πS1,i+1(u) + πS2,i+1(u)) (40)
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where now πS1,i+1 is the projection

πS1,i+1 : D(L∗i ) ∩ im(Li) −→ ker(D∗i ).

Now if we look at (37) we get:

φi+1(D(D∗i )) = D(Ln−i−1) and φi+1(ker(D∗i )) = ker(Ln−i−1)

while from Def. 1.2 we get:
φi+1(im(Di)) = im(L∗n−i−1).

Therefore, if we consider again (40), we have:

φi+1(πS1,i+1(u)) ∈ ker(Ln−i−1) because πS1,i+1(u) ∈ ker(D∗i )

and

φi+1(πS2,i+1(u)) ∈ D(Ln−i−1) ∩ im(L∗n−i−1) because πS2,i+1(u) ∈ im(Di) ∩ D(D∗i ).

In this way we can conclude that:

πP1,n−i−1(φi+1(u)) = φi+1(πS1,i+1(u)) and πP2,n−i−1(φi+1(u)) = φi+1(πS2,i+1(u))

because

πP1,n−i−1(φi+1(u)) + πP2,n−i−1(φi+1(u)) = φi+1(πS1,i+1(u) + πS2,i+1(u)) = φi+1(u)

πP1,n−i−1(φi+1(u))− φi+1(πS1,i+1(u)) ∈ ker(Ln−i−1),

πP2,n−i−1(φi+1(u))− φi+1(πS2,i+1(u)) ∈ D(Ln−i−1) ∩ im(L∗n−i−1)

and
ker(Ln−i−1) ∩ im(L∗n−i−1) = {0}.

Thus we proved (35) and (36) and this means that

φi+1(D(Si)) = D(Pn−i−1).

Now, in order to complete the proof of (29), we have to show that

Si(v) = ±C−1
i (φn−i ◦ Pn−i−1 ◦ φi+1)(v)

for each v ∈ D(Si). Let v ∈ D(Si). Then, according to (31),

v = v1 + v2

with v1 ∈ ker(D∗i ), v2 ∈ πS2,i+1(D(L∗i ) ∩ im(Li)) and we have φi(Si(v)) = φi(D
∗
i (v2)) =

φi(D
∗
i (πS2,i+1(w))) where w ∈ D(L∗i ) ∩ im(Li) is unique because, as proved in the proof of

Theorem 1.2, πS2,i+1 is injective. So we get:

φi(D
∗
i (πS2,i+1(w))) = C−1

i Ln−i−1(φi+1(πS2,i+1(w))) = C−1
i Ln−i−1(πP2,n−i−1(φi+1(w))) = (because

πP2,n−i−1(φi+1(w)) ∈ D(Pn−i−1)) = C−1
i Pn−i−1(πP2,n−i−1(φi+1(w))) =

C−1
i Pn−i−1(φi+1(πS2,i+1(w))) = C−1

i Pn−i−1(φi+1(v2)) = C−1
i Pn−i−1(φi+1(v1 + v2)) =

= C−1
i Pn−i−1(φi+1(v)).

Thus we proved that
φi(Si(v)) = C−1

i Pn−i−1(φi+1(v))

for each v ∈ D(Si) and therefore we can conclude that:

Si = C−1
i φ−1

i ◦ Pn−i−1 ◦ φi+1 = ±C−1
i φn−i ◦ Pn−i−1 ◦ φi+1.
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With the next theorem we investigate the Fredholm property for the complex (Hi, Pi).

Theorem 1.4. Let (Hj , Dj) ⊆ (Hj , Lj), j = 0, ..., n, be a pair of Hilbert complexes. Suppose
that, for each j, im(Dj) is closed in Hj+1. Let (Hj , Pj) be the Hilbert complex built in Theorem
1.2. Suppose that (Hj , Pj) is a Fredholm complex. Then:

1. Every Hilbert complex (Hj , Tj), such that (Hj , Dj) ⊆ (Hj , Tj) ⊆ (Hj , Lj), is a Fredholm
complex.

2. The quotient of the domain of Lj with the domain of Dj, that is

D(Lj)/D(Dj)

is a finite dimensional vector space for each j = 0, ..., n.

Proof. Consider a Hilbert complex (Hj , Tj) such that (Hj , Dj) ⊆ (Hj , Tj) ⊆ (Hj , Lj). For
each j we have a natural and injective map:

ker(Tj)/ im(Tj−1) −→ ker(Lj)/ im(Tj−1) (41)

and a natural and surjective map:

ker(Lj)/ im(Dj−1) −→ ker(Lj)/ im(Tj−1) (42)

But, by the assumptions, we know that ker(Lj)/ im(Dj−1), that is Hj(H∗, P∗), is finite di-
mensional. Therefore, combining (41) and (42) together, we get that Hj(H∗, T∗) is finite
dimensional for each j and this completes the proof of the first statement.
Now, for every j, consider the two following vector spaces: Wj defined as

Wj := D(Lj)/ im(Dj−1)

and Vj defined as
Vj := D(Dj)/ im(Dj−1).

Then Lj induces a well defined operator, that we call L̃j , acting from Wj to ker(Lj+1).

Analogously Dj induces a well defined operator D̃j : Vj → ker(Lj). Finally let us label
by ĩj : Vj −→Wj the map induced by the natural inclusion ij : D(Dj)→ D(Lj).
Now we recall that on Wj there is a natural and standard structure of Banach space because
it is defined as the quotient of a Hilbert space, that is (D(Lj), 〈 , 〉G), with a closed subspace,
that is im(Dj). Analogously also on Vj there is a natural and standard structure of Banach
space because it is defined as the quotient of (D(Dj), 〈 , 〉G), which is a Hilbert space, with
im(Dj), which is a closed subspace of (D(Dj), 〈 , 〉G) as well. We remark that the standard
norm on Wj is given by:

‖[u]‖Wj := inf
s∈im(Dj)

‖u+ s‖(D(Lj), 〈 , 〉G)

where [u] ∈Wj and analogously on Vj we have:

‖[v]‖Vj
:= inf

s∈im(Dj)
‖v + s‖(D(Dj), 〈 , 〉G)

where [v] ∈ Vj . It is immediate to check that in this way we have three continuous operators:

L̃j : Wj −→ ker(Lj+1), D̃j : Vj −→ ker(Lj+1), ĩj : Vj −→Wj (43)

acting between Banach spaces such that:

L̃j ◦ ĩj = D̃j . (44)

But D̃j is a Fredholm operator because ker(D̃j) ∼= Hj(H∗, D∗) and coker(D̃j) ∼= Hj+1(H∗, P∗).

Analogously L̃j is a Fredholm operator because ker(L̃j) ∼= Hj(H∗, P∗) and coker(L̃j) ∼=
Hj+1(H∗, L∗). Therefore, combining with (44), we get that ĩj is Fredholm too. But, by
the definition of ĩj , we get immediately that ĩj is injective and therefore we have

ind(̃ij) = −dim(coker(̃ij)). (45)

11



Now, in order to complete the proof, we have to observe that

coker(̃ij) ∼= Wj /̃ij(Vj) ∼= (D(Lj)/ im(Dj−1))/(̃ij(D(Dj)/ im(Dj−1))) ∼= D(Lj)/D(Dj). (46)

Therefore we can conclude that
D(Lj)/D(Dj)

is a finite dimensional vector space and this establishes the theorem.

Corollary 1.1. Under the assumptions of Theorem 1.4 we have the following cohomological
formula:

dim(D(Lj)/D(Dj)) = (47)

dim(Hj(H∗, P∗))− dim(Hj+1(H∗, L∗)) + dim(Hj+1(H∗, P∗))− dim(Hj(H∗, D∗)).

Proof. By (44), (45) and (46) we have dim(D(Lj)/D(Dj)) = − ind(̃ij) = ind(L̃j) − ind(D̃j).
But

ind(L̃j) = dim(ker(L̃j))− dim(coker(L̃j)) = dim(Hj(H∗, P∗))− dim(Hj+1(H∗, L∗)). (48)

Analogously

ind(D̃j) = dim(ker(D̃j))− dim(coker(D̃j)) = dim(Hj(H∗, D∗))− dim(Hj+1(H∗, P∗)). (49)

Therefore, combining (48) and (49), we get (47) and this completes the proof.

2 Poincaré duality for L2-cohomology

Now we recall how Hilbert complexes appear naturally in the context of riemannian geometry.
Let (M, g) be an open, oriented and possibly incomplete riemannian manifold. Consider the de
Rham complex (Ω∗c(M), d∗) where each form ω ∈ Ωic(M) is a i−form with compact support.
Using the riemannian metric g and the associated volume form d volg we can construct for
each i the Hilbert space L2Ωi(M, g). To turn the previous complex into a Hilbert complex we
must specify a closed extension of di. With the two following definitions we will recall the two
canonical closed extensions of di.

Definition 2.1. The maximal extension dmax; this is the operator acting on the domain:

D(dmax,i) = {ω ∈ L2Ωi(M, g) : ∃ η ∈ L2Ωi+1(M, g) (50)

s.t. 〈ω, δiζ〉L2Ωi(M,g) = 〈η, ζ〉L2Ωi+1(M,g) ∀ ζ ∈ Ωi+1
c (M)}.

In this case dmax,iω = η. In other words D(dmax,i) is the largest set of forms ω ∈ L2Ωi(M, g)
such that diω, computed distributionally, is also in L2Ωi+1(M, g).

Definition 2.2. The minimal extension dmin,i; this is given by the graph closure of di on
Ωic(M) with respect to the norm of L2Ωi(M, g), that is,

D(dmin,i) = {ω ∈ L2Ωi(M, g) : ∃ {ωj}j∈J ⊂ Ωic(M, g), ωj → ω, diωj → η ∈ L2Ωi+1(M, g)}
(51)

and in this case dmin,iω = η.

Obviously D(dmin,i) ⊆ D(dmax,i). Furthermore, from these definitions, we have immedi-
ately that

dmin,i(D(dmin,i)) ⊆ D(dmin,i+1), dmin,i+1 ◦ dmin,i = 0

and that
dmax,i(D(dmax,i)) ⊆ D(dmax,i+1), dmax,i+1 ◦ dmax,i = 0.

Therefore (L2Ω∗(M, g), dmax/min,∗) are both Hilbert complexes and their cohomology groups
are denoted by H∗2,max/min(M, g).

Consider now the formal adjoint of dk, δk : Ωk+1
c (M)→ Ωkc (M). In completely analogy to the
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previous definition δmax,k : L2Ωk+1 → L2Ωk(M, g) is defined as the distributional extension
of δk while δmin,k : L2Ωk+1 → L2Ωk(M, g) is defined as the graph closure of δk : Ωk+1

c (M)→
Ωkc (M). A straightforward but important fact is that the Hilbert complex adjoint of
(L2Ω∗(M, g), dmax/min,∗) is (L2Ω∗(M, g), δmin/max,∗), that is

(dmax,i)
∗ = δmin,i, (dmin,i)

∗ = δmax,i. (52)

Using Proposition 1.1 we obtain two weak Kodaira decompositions:

L2Ωi(M, g) = Hiabs/rel(M, g)⊕ im(dmax/min,i−1)⊕ im(δmin/max,i) (53)

with summands mutually orthogonal in each case. The first summand on the right, called the
absolute or relative Hodge cohomology, respectively, is defined as the orthogonal complement
of the other two summands. Since (im(dmax,i−1))⊥ = ker(δmin,i−1) and (im(dmin,i−1))⊥ =
ker(δmax,i−1), we see that

Hiabs/rel = ker(dmax/min,i) ∩ ker(δmin/max,i−1). (54)

Now consider the following operators:

∆abs,i = δmin,idmax,i + dmax,i−1δmin,i−1, ∆rel,i = δmax,idmin,i + dmin,i−1δmax,i−1 (55)

These are selfadjoint and satisfy:

Hiabs(M, g) = ker(∆abs,i), Hirel(M, g) = ker(∆rel,i) (56)

and

im(∆abs,i) = im(dmax,i−1)⊕ im(δmin,i), im(∆rel,i) = im(dmin,i−1)⊕ im(δmax,i). (57)

Furthermore if Hi
2,max/min(M, g) is finite dimensional then the range of dmax/min,i−1 is closed

and Hiabs/rel(M, g) ∼= Hi
2,max/min(M, g). On L2Ωi(M, g) we have also a third weak Kodaira

decomposition:

L2Ωi(M, g) = Himax(M, g)⊕ im(dmin,i−1)⊕ im(δmin,i) (58)

where Himax(M, g) satisfies Himax(M, g) = ker(dmax,i) ∩ ker(δmax,i−1). It is called the i − th
maximal Hodge cohomology group.
Finally consider again the complex (Ω∗c(M), d∗). We will call a closed extension of (Ω∗c(M), d∗)
any Hilbert complex (L2Ωi(M, g), Di) where Di : L2Ωi(M, g) → L2Ωi+1(M, g) is a closed op-
erator which extends di : Ωic(M, g) → Ωi+1

c (M, g) and such that the action of Di on D(Di),
its domain, coincides with the action of di on D(Di) in the distributional sense. Obviously
for every closed extension of (Ω∗c(M), d∗) we have (L2Ω∗(M, g), dmin,∗) ⊆ (L2Ω∗(M, g), Di) ⊆
(L2Ω∗(M, g), dmax,∗). We will label with Hi

2,D∗
(M, g) and H

i

2,D∗(M, g) respectively the coho-

mology groups and the reduced cohomology group of (L2Ωi(M, g), Di) and with HiD∗(M, g) its
Hodge cohomology groups.

Now we are in the position to prove the following results:

Proposition 2.1. Let (M, g) be an open, oriented and incomplete riemannian manifold of
dimension m. Then the complexes

(L2Ω∗(M, g), dmax,∗) and (L2Ω∗(M, g), dmin,∗)

are a pair of complementary Hilbert complexes.
Moreover, for every i = 0, ...,m, we have the following isomorphism:

ker(dmax,i)/im(dmin,i−1) ∼= ker(dmax,m−i)/im(dmin,m−i−1).

Proof. See [5] Theorem 11 for the proof of the first part of the theorem. The second part
follows from Theorem 1.1.
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Theorem 2.1. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-
mension m. Suppose that, for each i = 0, ...,m, im(dmin,i) is closed in L2Ωi+1(M, g). Then
there exists a Hilbert complex (L2Ωi(M, g)), dM,i) such that, for each i = 0, ...m, the following
properties are satisfied:

• D(dmin,i) ⊆ D(dM,i) ⊆ D(dmax,i), that is dmax,i is an extension of dM,i which is an
extension of dmin,i.

• im(dM,i) is closed in L2Ωi+1(M, g).

• If we denote Hi
2,M(M, g) the cohomology of the Hilbert complex (L2Ωi(M, g), dM,i) then

we have:
Hi

2,M(M, g) = ker(dmax,i)/ im(dmin,i)

and
Hi

2,M(M, g) ∼= Hm−i
2,M (M, g).

Proof. The proof is an application of Theorem 1.2 combined with Proposition 2.1.

From Theorem 1.3 we get the following result:

Theorem 2.2. Under the hypotheses of Theorem 2.1. Consider the Hilbert complexes:

0← L2(M, g)
δmax,0← L2Ω1(M, g)

δmax,1← L2Ω2(M, g)
δmax,2← ...

δmax,n−1← L2Ωn(M, g)← 0, (59)

and

0← L2(M, g)
δmin,0← L2Ω1(M, g)

δmin,1← L2Ω2(M, g)
δmin,2← ...

δmin,n−1← L2Ωn(M, g)← 0 (60)

Let

0← L2(M, g)
δM,0← L2Ω1(M, g)

δM,1← L2Ω2(M, g)
δM,2← ...

δM,n−1← L2Ωn(M, g)← 0 (61)

be the intermediate complex, which extends (60) and which is extended by (59), built according
to Theorem 1.2. Then, for each i = 0, ...,m, we have:

d∗M,i = δM,i = ± ∗ dM,i ∗ . (62)

Proof. It is an application of Theorem 1.3.

Applying Theorem 1.4 we get the following result:

Theorem 2.3. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-
mension m. Suppose that, for each i = 0, ...,m, im(dmin,i) is closed in L2Ωi+1(M, g). Let
(L2Ωi(M, g), dM,i) be the Hilbert complex built in Theorem 2.1. Assume that (L2Ωi(M, g), dM,i)
is a Fredholm complex. Then:

1. Every closed extension (L2Ωi(M, g), Di) of (Ωic(M), di) is a Fredholm complex.

2. For every i = 0, ...,dim(M) the quotient of the domain of dmax,i with the domain of
dmin,i, that is

D(dmax,i)/D(dmin,i)

is a finite dimensional vector space.

Proof. It is an application of Theorem 1.4.

Now, before stating the next result, we introduce some notations:

Definition 2.3. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-
mension m. Then, in analogy to the closed case, we label with b2,M,i(M, g), b2,M,i(M, g) and
b2,m,i(M, g) respectively the dimension of Hi

2,M(M, g), Hi
2,max(M, g) and Hi

2,min(M, g) when
they are finite dimensional. Moreover we define:

χ2,M (M, g) :=

m∑
i=0

(−1)ib2,M,i(M, g), χ2,M(M, g) :=

m∑
i=0

(−1)ib2,M,i(M, g) (63)

and

χ2,m(M, g) :=

m∑
i=0

(−1)ib2,m,i(M, g). (64)
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Corollary 2.1. Under the assumptions of Theorem 2.3 we have the cohomological formula

dim(D(dmax,i)/D(dmin,i)) = b2,M,i(M, g)−b2,M,i+1(M, g)+b2,M,i+1(M, g)−b2,m,i(M, g) (65)

for each i = 0, ...,m.

Proof. The corollary is an immediate application of Corollary 1.1.

We conclude this section with the following result. Let (M, g) be an open, oriented and
incomplete riemannian manifold of dimension m such that im(dmin,i) is closed for each i =
0, ...,m. Assume that (L2Ωi(M, g), dM,i) is a Fredholm complex. Then, according to Theorem
2.3, we can define the following number associated to (M, g):

ψL2(M, g) :=

m∑
i=0

(−1)i dim(D(dmax,i)/D(dmin,i)). (66)

ψL2(M, g) satisfies the following properties:

Theorem 2.4. Under the hypotheses of Theorem 2.3 the following formula holds:

ψL2(M, g) = χ2,M (M, g)− χ2,m(M, g) =

{
0 dim(M) is even
2χ2,M (M, g) dim(M) is odd

(67)

Proof. By (65) and (66) we have:

ψL2(M, g) =

m∑
i=0

(−1)i(b2,M,i(M, g)− b2,M,i+1(M, g) + b2,M,i+1(M, g)− b2,m,i(M, g)) =

=

m∑
i=0

(−1)ib2,M,i(M, g)−
m∑
i=0

(−1)ib2,M,i+1(M, g)+

m∑
i=0

(−1)ib2,M,i+1(M, g)−
m∑
i=0

(−1)ib2,m,i(M, g)) =

= χ2,M(M, g) +

m∑
i=0

(−1)i+1b2,M,i+1(M, g)−
m∑
i=0

(−1)i+1b2,M,i+1(M, g)− χ2,m(M, g) =

= χ2,M(M, g) +

m∑
i=1

(−1)ib2,M,i(M, g)−
m∑
i=1

(−1)ib2,M,i(M, g)− χ2,m(M, g) =

= χ2,M(M, g)− 1 + 1 +

m∑
i=1

(−1)ib2,M,i(M, g) + 1− 1−
m∑
i=1

(−1)ib2,M,i(M, g)− χ2,m(M, g) =

= χ2,M(M, g)− 1 + χ2,M (M, g) + 1− χ2,M(M, g)− χ2,m(M, g) =

= χ2,M (M, g)− χ2,m(M, g).

This proves the first equality of (67). By Prop. 2.1, we know that (L2Ωi(M, g), dmax,i) and
(L2Ωi(M, g), dmin,i) are complementary Hilbert complexes. Moreover, by the assumptions, we
know that these are both Fredholm. Therefore, applying Prop. 1.5, we get Hi

2,max(M, g) ∼=
Hm−i

2,min(M, g) for each i = 0, ...,dim(M). This implies that χ2,M (M, g) = χ2,m(M, g) when
dim(M) is even and that χ2,M (M, g) = −χ2,m(M, g) when dim(M) is odd. Thus we have
proved the second equality of (67).

Corollary 2.2. Under the assumptions of Theorem 2.3 we have the equality

ψL2(M, g) = ind(dmax+δmin)−ind(dmin+δmax) =

{
0 dim(M) is even
2 ind(dmax + δmin) dim(M) is odd

(68)
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Proof. We recall that dmax+δmin is the operator associated to the complex (L2Ωi(M, g), dmax,i)
according to (11). Analogously, again according to (11), dmin+δmax is the operator associated
to the complex (L2Ωi(M, g), dmin,i). Therefore they are Fredholm operators on their domains
endowed with the graph norm and it is easy to see that ind(dmax + δmin) = χ2,M (M, g) and
that ind(dmin + δmax) = χ2,m(M, g). Now, using (67), we get the first equality of (68).
As in the proof of Theorem 2.4, we have ind(dmax+δmin) = ind(dmin+δmax) when dim(M) is
even and ind(dmax + δmin) = − ind(dmin + δmax) when dim(M) is odd. Therefore this implies
immediately the second equality of (68) and so the proof is completed.

Remark 2.1. A priori there is no reason to expect that dim(D(dmax,i)/D(dmin,i)) and ψL2(M, g)
admit a description only in terms of L2-cohomology groups. Therefore the identities (65) and
(67) are remarkable.

3 Other results concerning (L2Ωi(M, g), dM,i)

In this section we collect other results concerning the Hilbert complex (L2Ωi(M, g), dM,i). We
start with the following Hodge theorem for the L2-cohomology groups Hi

2,M(M, g).

Theorem 3.1. Under the assumptions of Theorem 2.1; Let ∆i : Ωic(M) → Ωic(M) be the
Laplacian acting on the space of smooth compactly supported i−forms. Then there exists a
self-adjoint extension ∆M,i : L2Ωi(M, g)→ L2Ωi(M, g) with closed range such that

ker(∆M,i) ∼= Hi
2,M(M, g) ∼= ker(dmax,i)/ im(dmin,i). (69)

Proof. Consider the Hilbert complex (L2Ωi(M, g), dM,i). For each i = 0, ...,m define

∆M,i := d∗M,i ◦ dM,i + dM,i−1 ◦ d∗M,i−1 (70)

with domain given by

D(∆M,i) = {ω ∈ D(dM,i) ∩ D(d∗M,i−1) : dM,i(ω) ∈ D(d∗M,i) and d∗M,i−1(ω) ∈ D(dM,i−1)}.
(71)

In other words, for each i = 0, ...,m, ∆M,i is the i − th Laplacian associated to the Hilbert
complex (L2Ωi(M, g), dM,i). So, as recalled in the first section, we have that (70) is a self-
adjoint operator. Moreover, by Theorem 2.1, we know that dM,i has closed range for each i.
This implies that also d∗M,i has closed range for each i. This means that for the Hilbert complex

(L2Ωi(M, g), dM,i) the L2-cohomology and the reduced L2-cohomology are the same and so we
can apply (15) to get the first isomorphism of (69). The second one follows from Theorem 2.1.
Moreover, by the assumptions, we get that im(∆M,i) = im(dM,i−1)⊕ im(d∗M,i). Indeed we have
im(∆M,i) ⊂ im(dM,i−1) ⊕ im(d∗M,i) for all i = 0, ...,m. Now let ω ∈ im(dM,i−1) ⊕ im(d∗M,i).
Applying repeatedly the decomposition in Prop. 1.1 and keeping in mind that dM,i and d∗M,i

have closed range in all degree, we get that

ω = dM,i−1(d∗M,i−1(dM,i−1(η1))) + d∗M,i(dM,i(d
∗
M,i(η2)))

for some η1 ∈ D(dM,i−1) and η2 ∈ D(d∗M,i). Also, by the construction of η1 and η2, we get that

dM,i−1(η1) + d∗M,i(η2) ∈ D(∆M,i)

and

dM,i−1(d∗M,i−1(dM,i−1(η1))) + d∗M,i(dM,i(d
∗
M,i(η2))) = ∆M,i(dM,i−1(η1) + d∗M,i(η2)).

Therefore we get im(∆M,i) ⊃ im(dM,i−1) ⊕ im(d∗M,i) and in this way we can conclude that
∆M,i is an operator with closed range. This completes the proof.

According to (13) we have ker(∆M,i) = ker(dM,i)∩ker(d∗M,i). We will label these spaces as

HiM(M, g). Moreover, by the construction of dM,i, we have that ker(dM,i) = ker(dmax,i) and
that im(dM,i) = im(dmin,i). In particular this implies that the orthogonal decomposition of
L2Ωi(M, g) induced by (L2Ωi(M, g), dM,i), that is

L2Ωi(M, g) = HiM(M, g)⊕ im(dM,i)⊕ im(d∗M,i)

16



coincides with the one described in (58), that is

L2Ωi(M, g) = Himax(M, g)⊕ im(dmin,i)⊕ im(δmin,i).

In particular we have

Himax(M, g) = ker(∆M,i) = ker(dM,i) ∩ ker(d∗M,i). (72)

The next proposition show that Hi
2,M(M, g) is the biggest L2-cohomology group for (M, g).

Proposition 3.1. Let (M, g) be an open, oriented and incomplete riemannian manifold which
satisfies the assumptions of Theorem 2.1. Then we have the following properties:

1. Consider the natural inclusion of complexes (L2Ωi(M, g), dmin,i) ⊂ (L2Ωi(M, g), dM,i).
Then the map induced between cohomology groups is injective for all i = 0, ...,m.

2. Let (L2Ωi(M, g), Di) be a closed extension of (Ωic(M), di). Then, for each i = 0, ...,m,

there exists a natural injective map H
i

2,D∗(M, g)→ Hi
2,M(M, g).

Finally, if (L2Ωi(M, g), dM,i) is a Fredholm complex, then for every closed extension
(L2Ωi(M, g), Di), there is an injective map Hi

2,D∗
(M, g)→ Hi

2,M(M, g) for every i = 0, ...,m.

Proof. The first property follows immediately by the fact that

H
i

2,M(M, g) = ker(dmax,i)/ im(dmin,i−1).

For the second property, by Prop. 1.4, we have H
i

2,D∗(M, g) ∼= HiD∗(M, g). So applying (13)

we get H
i

2,D∗(M, g) ∼= ker(Di) ∩ ker(D∗i−1). Applying the same statements to the complex

(L2Ωi(M, g), dM,i) we get Hi
2,M(M, g) ∼= ker(dM,i)∩ ker(d∗M,i−1) ∼= ker(dmax,i)∩ ker(δmax,i−1)

by (72). Summarizing we have:

H
i

2,D∗(M, g) ∼= ker(Di) ∩ ker(D∗i−1) ⊂ ker(dmax,i) ∩ ker(δmax,i−1) ∼= Hi
2,M(M, g) (73)

and this proves the second statement. Finally if (L2Ωi(M, g), dM,i) is a Fredholm complex
then, according to Theorem 2.3, we know that every closed extension (L2Ωi(M, g), Di) is a
Fredholm complex. Thus (73) becomes:

Hi
2,D∗(M, g) ∼= ker(Di) ∩ ker(D∗i−1) ⊂ ker(dmax,i) ∩ ker(δmax,i−1) ∼= Hi

2,M(M, g)

and this completes the proof.

Finally we conclude this section with the following proposition:

Proposition 3.2. Let (M, g) be an oriented and incomplete riemannian manifold. The fol-
lowing properties are equivalent:

1. D(dmin,i) = D(dmax,i) for all i = 0, ...,m.

2. im(dmin,i) = im(dmax,i) for all i = 0, ..., n.

Moreover if (L2Ωi(M, g), dmax/min,i) is a Fredholm complex then we have the following list of
equivalent properties:

1. D(dmin,i) = D(dmax,i) for all i = 0, ...,m.

2. im(dmin,i) = im(dmax,i) for all i = 0, ...,m.

3. ker(dmin,i) = ker(dmax,i) for all i = 0, ...,m.

4. Hi
2,max(M, g) ∼= Hi

2,M(M, g) for all i = 0, ...,m.

5. Hi
2,min(M, g) ∼= Hi

2,M(M, g) for all i = 0, ...,m.
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Proof. We start proving the equivalence of the first pair of statements. Clearly 1) implies 2).
Assume now that 2) holds. Then we know that also im(dmin,i) = im(dmax,i) for all i = 0, ...,m.
Therefore we get ker(δmin,i) = ker(δmax,i) and finally, using the Hodge star operator we get
ker(dmin,i) = ker(dmax,i) for all i = 0, ...,m. Now let η ∈ D(dmax,i). Then there exists
ω ∈ D(dmin,i) such that dmax,iη = dmin,iω. This means that η−ω ∈ ker(dmax,i) and therefore
there exists ψ ∈ ker(dmin,i) such that η − ω = ψ. Summarizing we got η = ω + ψ ∈ D(dmin,i)
and this concludes the proof of the first part.
Now we prove the second part of the proposition. First of all we observe that using the
Hodge star operator, it follows easily that (L2Ωi(M, g), dmax,i) is Fredholm if and only if
(L2Ωi(M, g), dmin,i) is Fredholm. Now from the first part we know that the first two assertions
are equivalent and they imply the remaining statements. Assume now that 3) holds. Then ap-
plying the Hodge star operator we know that also ker(δmin,i) = ker(δmax,i) and therefore that
im(dmin,i) = im(dmax,i) for all i = 0, ...,m because, by the fact that (L2Ωi(M, g), dmax/min,i)
is a Fredholm complexes, we have that im(dmax/min,i) is closed. So we can apply the first part
of the proposition to get the conclusion.
Now assume that 4) holds. Then Hi

2,M(M, g) is finite dimensional. We already know that

Hi
2,max(M, g) ∼= ker(δmin,i−1)∩ker(dmax,i) ⊂ ker(δmax,i−1)∩ker(dmax,i) ∼= Hi

2,M(M, g). Com-
bining with 4) we get

ker(δmin,i−1) ∩ ker(dmax,i) = ker(δmax,i−1) ∩ ker(dmax,i)

and therefore using the weak Kodaira decompositions (53) and (58) we have:

im(dmax,i−1)⊕ im(δmin,i) = im(dmin,i−1)⊕ im(δmin,i).

In this way we get: im(dmin,i−1) = im(dmax,i−1) for each i. So we are in position to apply the
first part of the proposition and therefore we proved that 4)⇒ 1). In the same way, with the
obvious modifications, we can prove that 5)⇒ 1).

4 L2−Euler characteristic and L2−signature

Let (M, g) be an open, oriented and incomplete riemannian manifold such that (L2Ωi(M, g), dM,i)
is a Fredholm complex. Then, in Definition 2.3, we defined the L2−Euler characteristic of
(M, g) associated to (L2Ωi(M, g), dM,i) as:

χ2,M(M, g) :=

m∑
i=0

(−1)ib2,M,i(M, g) (74)

where b2,i,M(M, g) := dim(Hi
2,M(M, g)). We have the following immediate corollary:

Corollary 4.1. Let (M, g) be an open, oriented and incomplete manifold such that (L2Ωi(M, g), dM,i)
is a Fredholm complex. If m is odd then:

χ2,M(M, g) = 0.

Proof. It is an immediate consequence of the fact that Hi
2,M(M, g) ∼= Hm−i

M (M, g).

Now consider the operator

dM + d∗M : L2Ω∗(M, g)→ L2Ω∗(M, g)

defined according to (11). Let us label L2Ωev(M, g) :=
⊕m

i=0 L
2Ω2i(M, g) and analogously

L2Ωodd(M, g) :=
⊕m

i=0 L
2Ω2i+1(M, g). Define

(dM + d∗M)ev/odd : L2Ωev/odd(M, g)→ L2Ωodd/ev(M, g) (75)

as the restriction of dM + d∗M to L2Ωev/odd(M, g) with domain given by

D((dM + d∗M)ev) := D(dM + d∗M) ∩ L2Ωev(M, g) =

m⊕
i=0

(D(d∗M,2i−1) ∩ D(dM,2i))
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and analogously

D((dM + d∗M)odd) := D(dM + d∗M) ∩ L2Ωodd(M, g) =

m⊕
i=0

(D(d∗M,2i) ∩ D(dM,2i+1))

Clearly (dM + d∗M)odd is the adjoint of (dM + d∗M)ev.
We are ready for the next theorem.

Theorem 4.1. Let (M, g) be an open, oriented and incomplete riemannian manifold of dimen-
sion m such that (L2Ωi(M, g), dM,i) is a Fredholm complex. Then (dM + d∗M)ev is a Fredholm
operator on its domain endowed with the graph norm and we have:

ind((dM + d∗M)ev) = χ2,M(M, g) (76)

Proof. By the assumptions we know that (L2Ωi(M, g), dM,i) is a Fredholm complex. Therefore,
using Prop. 1.3, we can conclude that dM + d∗M : L2Ω∗(M, g) → L2Ω∗(M, g) is Fredholm
operator on its domain endowed with the graph norm. Clearly we have

ker((dM + d∗M)ev) = ker(dM + d∗M) ∩ L2Ωev(M, g)

and
im((dM + d∗M)ev) = im(dM + d∗M) ∩ L2Ωodd(M, g).

We get immediately that ker((dM + d∗M)ev) is finite dimensional and that im((dM + d∗M)ev) is
closed with finite dimensional orthogonal complement. So we got that also (dM + d∗M)ev is a
Fredholm operator on its domain endowed with the graph norm. This implies that (dM+d∗M)odd

is Fredholm too because it is the adjoint of (dM + d∗M)ev.
Now using (13), (14), (15) we get:

ker((dM+d∗M)ev) = ker((dM+d∗M)odd◦(dM+d∗M)ev) =

m∑
i=0

ker(∆M,2i) =

m∑
i=0

H2i
2,M(M, g). (77)

Analogously:

(im((dM + d∗M)ev))⊥ = ker((dM + d∗M)odd) =

m∑
i=0

ker(∆M,2i+1) =

m∑
i=0

H2i+1
2,M (M, g). (78)

Now (76) follows immediately by (77) and (78) and this establishes the Theorem.

In the rest of this section we will describe how to define a L2−signature for (M, g) using

Hi
2,M(M, g). To this aim, first of all, let us label H

i

2,M(M, g) the vector spaces defined as

H
i

2,M(M, g) := ker(dmax,i)/im(dmin,i).

The first step is to show that using the wedge product we can construct a well defined and non

degenerate pairing between H
i

2,M(M, g) and H
m−i
2,M (M, g) where m = dim(M).

We define:

H
i

2,M(M, g)×Hm−i
2,M (M, g) −→ R, ([η], [ω]) 7→

∫
M

η ∧ ω (79)

where ω and η are any representative of [η] and [ω] respectively.

Proposition 4.1. Let (M,g) be an open, oriented and incomplete riemannian manifold of
dimension m. Then (79) is a well defined and non degenerate pairing.

Proof. The first step is to show that (79) is well defined. Let η′, ω′ other two forms such that

[η] = [η′] in H
i

2,M(M, g), [ω] = [ω′] in H
m−i
2,M (M, g). Then there exists α ∈ im(dmin,i−1) and

β ∈ im(dmin,m−i−1) such that η = η′ + α and ω = ω′ + β. Therefore:∫
M

η ∧ ω =

∫
M

(η′ + α) ∧ (ω′ + β) =

∫
M

η′ ∧ ω′ +
∫
M

η′ ∧ β +

∫
M

α ∧ ω′ +
∫
M

α ∧ β
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Now ∫
M

η′ ∧ β = ±
∫
M

〈η′, ∗β〉d volg = ±〈η′, ∗β〉L2Ωi(M,g) = 0

because ∗β ∈ im(δmin,i) and α ∈ ker(dmax,i). In the same way:∫
M

α ∧ β = ±
∫
M

〈α, ∗β〉d volg = ±〈α, ∗β〉L2Ωi(M,g) = 0

because α ∈ im(dmin,i−1) and ∗β ∈ im(δmin,i). Finally∫
M

α ∧ ω′ = ±
∫
M

〈α, ∗ω′〉d volg = ±〈α, ∗ω′〉L2Ωi(M,g) = 0

because α ∈ im(dmin,i−1) and ω′ ∈ ker(δmax,i−1). So we can conclude that (79) is well defined.

Now fix [η] ∈ H
i

2,M(M, g) and suppose that for each [ω] ∈ H
m−i
2,M (M, g) the pairing (79)

vanishes. Then this means that for each ω ∈ ker(dmax,m−i) we have
∫
M
η ∧ ω = 0. We also

know that
∫
M
η ∧ ω = ±〈η, ∗ω〉L2Ωi(M,g) and that ∗(ker(dmax,m−i)) = ker(δmax,i−1) . So by

the fact that (ker(δmax,i−1))⊥ = im(dmin,i−1) we obtain that [η] = 0. In the same way if [ω] ∈
H
m−i
2,M (M, g) is such that for each [η] ∈ Hi

2,M(M, g) the pairing (79) vanishes then we know that
for each η ∈ ker(dmax,i) we have

∫
M
η∧ω = 0. But we know that

∫
M
η∧ω = ±〈η, ∗ω〉L2Ωi(M,g).

By the fact that (ker(dmax,i))
⊥ = im(δmin,i) and that ∗(im(δmin,i)) = (im(dmin,m−i−1)) we

obtain that [ω] = 0.
So we can conclude that the pairing (79) is well defined and non degenerate and this establishes
the proposition.

We have the following immediate corollary:

Corollary 4.2. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-

mension m = 4n. Then on H
2n

2,M(M, g) the pairing (79) is a symmetric bilinear form.

We can now state the following definition:

Definition 4.1. Let (M, g) be an open, oriented and incomplete riemannian manifold of di-

mension m = 4n such that, for i = 2n, H
2n

2,M(M, g) is finite dimensional. Then we define the

L2−signature of (M, g) associated to H
2n

2,M(M, g) 1 and we label it σ2,M(M, g) as the signature

of the pairing (79) applied on H
2n

2,M(M, g).

Before concluding this section with the next theorem we need to introduce some notations.
Let (M, g) be an open, oriented and incomplete riemannian manifold of dimension m = 4l.
Consider the complexified cotangent bundle T ∗CM

∼= T ∗M ⊗ C. Then the metric g admits a
natural extension as a positive definite hermitian metric on T ∗M ⊗ C and therefore, in com-
plete analogy to the real case, we can build L2Ω∗C(M, g) ∼= L2Ω∗(M, g) ⊗ C, dmax/M/min,i :

L2ΩiC(M, g) −→ L2Ωi+1
C (M, g), (d + δ)max/min : L2Ω∗C(M, g) −→ L2Ω∗C(M, g) etc, etc. Con-

sider now the endomorphism ε : Λ∗C(T ∗M) −→ Λ∗C(T ∗M) defined by ε := (
√
−1)p(p−1)+2l∗ on

ΛpC(T ∗M). This is the well known endomorphism of the classical signature theorem. In fact
we have ε2 = Id and therefore we get the well known Z2 graduation of the signature theorem
given by the eigenspaces of ε associated to eigenvalues {±1}: Λ∗C(M) ∼= (Λ∗C(M))+⊕(Λ∗C(M))−,
Ω∗(M,C) ∼= (Ω∗(M,C))+⊕ (Ω∗(M,C))−. Clearly we can extend this Z2 graduation also in the
L2 setting and we get L2Ω∗C(M, g) ∼= (L2Ω∗C(M, g))+ ⊕ (L2Ω∗C(M, g))−. Another well known
property is that d+ δ is odd with respect to ε. So we can recall the definition of the signature
operator as the operator acting in the following way:

d+ δ : (Ω∗c(M,C))+ −→ (Ω∗c(M,C))−.

We label it Dsign,+. Clearly Dsign,−, that is d + δ : (Ω∗c(M,C))− −→ (Ω∗c(M,C))+, is the
formal adjoint of Dsign,+. Finally we introduce:

∆+ := Dsign,− ◦Dsign,+, ∆+ : (Ω∗c(M,C))+ −→ (Ω∗c(M,C))+

1In [5] we introduced a different L2−signature for (M, g) using another kind of L2-cohomology. So when
(M, g) is incomplete we may have different kinds of L2−signatures and therefore we have to specify the
L2−complex that we are using.
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and
∆− := Dsign,+ ◦Dsign,−, ∆− : (Ω∗c(M,C))− −→ (Ω∗c(M,C))−.

Our goal now is to define a closed extension of Dsign,+ which is a Fredholm operator on its
domain endowed with the graph norm and whose index equals σ2,M(M, g). In order to get this
aim consider again the following operators:

dM + d∗M : L2Ω∗C(M, g) −→ L2Ω∗C(M, g) (80)

and
∆M := (dM + d∗M) ◦ (dM + d∗M).

From Theorems 1.3 and 2.2 we get that both D(dM +d∗M) and D(∆M) are invariant under the
action of the Hodge star operator ∗. Therefore they are also invariant under the action of ε.
Moreover dM + d∗M is odd with respect to ε. In particular we get

D(dM + d∗M) = (D(dM + d∗M))+ ⊕ (D(dM + d∗M))− (81)

and analogously
D(∆M) = (D(∆M))+ ⊕ (D(∆M))− (82)

Define now (dM + d∗M)+/− as the restriction of dM + d∗M to (D(dM + d∗M))+/− respectively.
Therefore we have

(dM + d∗M)+ : (D(dM + d∗M))+ −→ (L2Ω∗C(M, g))−

and analogously
(dM + d∗M)− : (D(dM + d∗M))− −→ (L2Ω∗C(M, g))+.

Clearly (dM+d∗M)− is the adjoint of (dM+d∗M)+.Define ∆+
M as ∆+

M := (dM+d∗M)−◦(dM+d∗M)+

and analogously ∆−M := (dM + d∗M)+ ◦ (dM + d∗M)−. Finally we are in position to prove the
last theorem of this section:

Theorem 4.2. Let (M, g) be an open, oriented and incomplete riemannian manifold of dimen-
sion 4l such that (L2Ωi(M, g), dM,i) is a Fredholm complex. Then (dM + d∗M)+ is a Fredholm
operator on its domain endowed with the graph norm and we have:

σ2,M(M, g) = ind((dM + d∗M)+).

Proof. By the assumptions dM + d∗M is a Fredholm operator on its domain endowed with the
graph norm. By the fact that

ker((dM + d∗M)+/−) = ker(dM + d∗M) ∩ (L2Ω∗C(M, g))+/−

and that
im((dM + d∗M)+/−) = im(dM + d∗M) ∩ (L2Ω∗C(M, g))+/−

we get that also (dM + d∗M)+/− are Fredholm operators on their respective domains endowed
with the graph norm. This proves the first part of the proposition.
Now, in order to prove the second part, we follows, with the necessary modifications, the classic
proof of the signature Theorem, see for example [6]. We start observing that

ind((dM + d∗M)+) = dim(ker(∆+
M))− dim(ker(∆−M)).

Moreover we have:

ker(∆
+/−
M ) = (

2l−1⊕
k=0

(ker(∆
+/−
M )∩(L2ΩkC(M, g)⊕L2Ω4l−k

C (M, g))))⊕(ker(∆
+/−
M )∩L2Ω2l

C (M, g)).

Now if ω ∈ ker(∆+
M) ∩ (L2ΩkC(M, g)⊕ L2Ω4l−k

C (M, g)) with k ≤ 2l − 1 then ω = η + ε(η) with
η ∈ HkM(M, g). On the other hand if η ∈ HkM(M, g) then η+ ε(η) ∈ ker(∆+

M)∩ (L2ΩkC(M, g)⊕
L2Ω4l−k

C (M, g)). Therefore we can conclude that

ker(∆+
M) ∩ (L2ΩkC(M, g)⊕ L2Ω4l−k

C (M, g)) = {η + ε(η), η ∈ HkM(M, g)}.
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The same observations lead to the conclusion that

ker(∆−M) ∩ (L2ΩkC(M, g)⊕ L2Ω4l−k
C (M, g)) = {η − ε(η), η ∈ HkM(M, g)}.

In this way we get that

2l−1⊕
k=0

(ker(∆+
M) ∩ (L2ΩkC(M, g)⊕ L2Ω4l−k

C (M, g)))

is isomorphic to
2l−1⊕
k=0

(ker(∆−M) ∩ (L2ΩkC(M, g)⊕ L2Ω4l−k
C (M, g))).

So we proved that
ind((dM + d∗M)+) =

= dim(ker(∆+
M) ∩ L2Ω2l

C (M, g))− dim(ker(∆−M) ∩ L2Ω2l
C (M, g)).

But ker(∆M) ∩ L2Ω2l
C (M, g) = H2l

M(M, g) and this implies that ker(∆
+/−
M ) ∩ L2Ω2l

C (M, g) =
(H2l

M(M, g))+/−. Now if η ∈ (H2l
M(M, g))+ this means that η ∈ H2l

M(M, g) and that ε(η) = η
that is ∗η = η. Analogously if η ∈ (H2l

M(M, g))− this means that η ∈ H2l
M(M, g) and that

ε(η) = −η that is ∗η = −η. In conclusion we proved that:

ind((dM + d∗M)+) = dim(ker(∆+
M) ∩ L2Ω2l

C (M, g))− dim(ker(∆−M) ∩ L2Ω2l
C (M, g)) =

= dim(HiM(M, g))+ − dim(HiM(M, g))− = σ2,M(M, g)

and this completes the proof.

5 Some examples and applications

It is not difficult to find examples of open, oriented and incomplete riemannian manifolds
(M, g) of dimension m such that im(dmin,i) is closed in L2Ωi+1(M, g) for all i = 0, ...,m. We
can consider, for example, a compact and oriented manifold with boundary endowed with a
smooth metric up to the boundary as in [7], admissible riemannian pseudomanifold as in [12] or
in [19], compact stratified pseudomanifold endowed with a quasi edge metric with weights as in
[4] or the Weil-Peterson metric on the regular part of the moduli space of curves as in [20]. In
these examples the maximal L2-de Rham cohomology, Hi

2,max(M, g), is finite dimensional for

each i = 0, ...,m. As explained in the proof of Theorem 2.4 this implies that Hi
2,min(M, g) ∼=

Hm−i
2,max(M, g) and therefore Hi

2,min(M, g) is finite dimensional as well. Finally, as recalled in

Prop. 1.2, we can conclude that im(dmin,i) is closed in L2Ωi+1 for each i = 0, ...,m. Therefore,
in all these cases, we can always build the complex (L2Ωi(M, g), dM,i). What is much more
complicated is to find examples of open, oriented and incomplete riemannian manifolds (M, g)
such that (L2Ωi(M, g), dM,i) is a Fredholm complex. The first part of this last section is
devoted to this task.
First of all we recall that two riemannian metrics g and h are said quasi isometric if there exists
a positive real number c such that 1

ch ≤ g ≤ ch. It is easy to check that if M is an oriented
manifold of dimension m and if g and h are two riemannian metrics over M quasi-isometric
then, for every i = 0, ...,m, L2Ωi(M, g) = L2Ωi(M,h), D(dmax,i), ker(dmax,i), im(dmax,i) (with
respect to g) coincide respectively with D(dmax,i), ker(dmax,i), im(dmax,i) (with respect to h)
and analogously D(dmin,i), ker(dmin,i), im(dmin,i) (with respect to g) coincide respectively
with D(dmin,i), ker(dmin,i), im(dmin,i) (with respect to h).
Now we describe the first example; we start with the following definition from [8].
Let M be a compact manifold with boundary N := ∂M . Let us label its interior with M . Let
U ∼= [0, 1)×N be a collar neighborhood for N . Let g be a riemannian metric over M such that
g restricted to U is isometric to h(x)(dx2 + x2gN (x)) where gN (x) is a family of metric on N
depending on x which varies smoothly in (0, 1) and continuously [0, 1) and h ∈ C∞((0, 1)×N)
satisfies:

sup
p∈N
|(x∂x)jx−ch(x, p)− 1| = O(xδ) as x→ 0, j = 0, 1
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sup
p∈N
‖h(x, p)−1dNh(x, p)‖T∗pN,gN (x) = O(xδ) as x→ 0

and
sup
p∈N

(|(g1 − g0)|(x,p) + x|ω0 − ω1|(x,p)) = O(xδ) as x→ 0

for some δ > 0 and c > −1 and where g0 := dx2 +x2gN (0), g1 = dx2 +x2gN (x) and ω0, ω1 are
the connection forms of the Levi-Civita connection ∇0,∇1 of g0 and g1 respectively.
The metric g is called a conformally conic metric. As it is showed in [9], [10] and [11] if we
consider a complex projective curve V ⊂ CPn and g is the riemannian metric induced by the
Fubini-Study metric of CPn on the regular part of V then g is a conformally conic metric.
According to [8] if (M, g) is a conformally conic riemannian manifold then every closed extension
of (Ωic(M), di) is a Fredholm complex. In particular, according to Prop. 1.2, im(dmin,i) is closed
for each i. Therefore we have the following corollary:

Corollary 5.1. Let (M, g) be an oriented riemannian manifold where M is the interior of
a compact manifold with boundary and g is a riemannian metric on M quasi isometric to a
conformally conic metric. Then Theorems 2.1, 2.3, 2.4, 3.1, 4.1, and 4.2 and their relative
corollaries hold for (M, g). In particular they hold when M is the regular part of a complex
projective curve V ⊂ CPn and g is any riemannian metric on M quasi isometric to the metric
induced by the Fubini-Study metric of CPn.

Another example is the following: consider again a compact and oriented riemannian man-
ifold with boundary M . As above let us label with N the boundary of M , with M its interior
and finally with U ∼= [0, 1) a collar neighborhood of N . Let g be a riemannian metric on M
such that, over U , it takes the form dx2 + x2βh where β > 1 and h is a riemannian metric on
N . A riemannian metric like that is called metric horn. In [18] the authors prove that if we
consider the Gauss-Bonnet operator

d+ δ : L2Ω∗(M, g)→ L2Ω∗(M, g) (83)

with domain given by Ω∗c(M) then every closed extension of (83) is a Fredholm operator on
its domain endowed with the graph norm. This, according to Lemma 2.3 of [7] and to Prop.
1.3, implies that every closed extension of (Ωic(M, g), g) is a Fredholm complex. In particular,
according to Prop. 1.2, im(dmin,i) is closed for each i. Therefore we have:

Corollary 5.2. Let (M, g) be an oriented riemannian manifold where M is the interior of a
compact manifold with boundary and let g be a riemannian metric on M quasi-isometric to a
metric horn. Then Theorems 2.1, 2.3, 2.4, 3.1, 4.1, and 4.2 and their relative corollaries hold
for (M, g).

Furthermore we mention that recently, in his PhD thesis [17], Frank Lapp generalised the
result of Lesch and Peyerimhoff to the following case: consider again a compact and oriented
manifold with boundary M such that the boundary, that we still label with N , is diffeomorphic
to a product of closed manifolds: N ∼= N1× ...×Nq. Let U be a collar neighborhood of N and
let g be a riemannian metric on M such that over U ∼= [0, 1)×N1 × ...×Nq it takes the form

dx2 + h2
1(x)g1 + ...+ h2

q(x)gq (84)

where hi(x) ∈ C∞((0, 1], (0,∞)) and h1, ..., hq are riemannian metrics on N1, ..., Nq respec-
tively. A metric with this shape is called a multiply warped product metric. In his thesis,
see [17] pag. 115 Theorem 5.3.5, Lapp proved that if for some constant K > 0 and β > 1

max
j=1,...,q

hj(x) ≤ Krβ x ∈ (0, 1) (85)

and for every j = 1, ..., q there exists a real number cj such that∫ 1

0

x| log x||
h′j(x)

hj(x)
− cj
x
|2dx <∞ (86)

then every closed extension of the Gauss-Bonnet operator

d+ δ : L2Ω∗(M, g)→ L2Ω∗(M, g)
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with domain given by Ω∗c(M), is a Fredholm operator on its domain endowed with the graph
norm. In particular this is true when g is a multiply metric horns that is in (84) all the
warping functions satisfy the following requirement:

hi(x) = xβi , βi > 1, i = 1, ..., q.

Therefore, using again Prop. 1.3 and Lemma 2.3 of [7], we can conclude that every closed
extension of (Ωic(M), g) is a Fredholm complex. In particular, again according to Prop. 1.2,
im(dmin,i) is closed for each i. So we have the following corollary:

Corollary 5.3. Let (M, g) be an oriented riemannian manifold where M is the interior of a
compact manifold with boundary M . Suppose that the boundary is diffeomorphic to a product
∂M ∼= N1× ...×Nq. Let g be a riemannian metric on M quasi-isometric to a multiply warped
product metric which satisfies condition (85) and (86). Then Theorems 2.1, 2.3, 2.4, 3.1, 4.1,
and 4.2 and their relative corollaries hold for (M, g).

Finally we conclude the paper with the following result. First of all we recall the definition
of manifold with conical singularities:

Definition 5.1. Let L be a manifold. The truncated cone over L, usually labeled Ca(L), is
defined as

L× [0, a)/({0} × L). (87)

Definition 5.2. A manifold with conical singularities X is a metrizable, locally compact,
Hausdorff space such that there exists a sequence of points {p1, ..., pn, ...} ⊂ X which satisfies
the following properties:

1. X \ {p1, ..., pn, ...} is a smooth manifold.

2. For each pi there exists an open neighborhood Upi , a closed manifold Lpi and a map
χpi : Upi → C2(Lpi) such that χpi(pi) = v and χpi |Upi

\{pi} : Upi \ {pi} → Lpi × (0, 2) is
a diffeomorphism.

The regular and the singular part of X are defined as

sing(X) = {p1, ..., pn, ...}, reg(X) := X \ sing(X) = X \ {p1, ..., pn, ...}.

The singular points pi are usually called conical points and the smooth closed manifold Lpi is
usually called the link relative to the point pi. If X is compact then it is clear, from the above
definition, that the sequences of conical points {p1, ..., pn, ...} is made of isolated points and
therefore on X there are just a finite number of conical points.
Now we recall from [2] a particular case, which is suitable for our purpose, of an important
result which describe a blowup process to resolve the singularities.

Proposition 5.1. Let X be a compact manifold with conical singularities. Then there exists
a manifold with boundary M and a blow-down map β : M → X which has the following
properties:

1. β|M : M → reg(X), where M is the interior of M , is a diffeomorphsim.

2. If N is a connected component of ∂M and if U ∼= N × [0, 1) is a collar neighborhood of
N then β(U) = N × [0, 1)/(N × {0}). In particular β(N) = p where p is a conical point
of X and N becomes one of the connected components of the link of p.

3. If for each conical point pi the relative link Lpi is connected, then there is a bijection
between the conical points of X and the connected components of ∂M.

Proof. See [2], Proposition 2.5.

Now we introduce a class of riemannian metrics on these spaces.
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Definition 5.3. Let X be a manifold with conical singularities. A conic metric g on reg(X)
is riemannian metric with the following property: for each conical point pi there exists a map
χpi , as defined in Definition 5.2, such that

(χ−1
pi )∗(g|Upi

) = dx2 + x2hLpi(x) (88)

where hLpi(x) depends smoothly on x up to 0 and for each fixed x ∈ [0, 1) it is a riemannian
metric on Lpi . Analogously, if M is manifold with boundary and M is its interior part, then g
is a conic metric on M if it is a smooth, symmetric section of T ∗M ⊗ T ∗M , degenerate over
the boundary, such that over a collar neighborhood U of ∂M , g satisfies (88) with respect to
some diffeomorphism χ : U → [0, 1)× ∂M.

Now consider again a compact and orientable manifold X with conical singularities such
that reg(X) is endowed with a conic metric g. Then from Definition 5.2, Prop. 5.1 and Def.
5.3 it is clear that Corollary 5.1 applies to (reg(X), g). Moreover, as shown by Cheeger in [13],
we have

Hi
2,max(reg(X), g) ∼= ImHi(X,R), Hi

2,min(reg(X), g) ∼= ImHi(X,R) (89)

where ImHi(X,R) and ImHi(X,R) are respectively the intersection cohomology groups
of X associated to the lower middle perversity and to the upper middle perversity. For the
definition and the main properties of the intersection cohomology we refer to the fundamental
papers [14] and [15] or to the monographs [3] and [16]. Therefore we get the following corollary:

Corollary 5.4. Let X be a compact and oriented manifold with conical singularities of dimen-
sion m. Let g be a conic metric on reg(X). Then:

ψL2(reg(X), g) =

m∑
i=0

(−1)i dim(ImHi(X,R))−
m∑
i=0

(−1)i dim(ImHi(X,R)) (90)

or equivalently

ψL2(reg(X), g) =

{
0 m is even
2
∑m
i=0(−1)i dim(ImHi(X,R)) m is odd

(91)

Suppose now that Y is another compact and oriented manifold with conical singularities. Let
h be a conic metric on reg(Y ). Assume that X and Y are homeomorphic or that X and Y
are equivalent through a stratum preserving homotopy equivalences, (see [16] pag 62 for the
definition of stratum preserving homotopy equivalences). Then:

ψL2(reg(X), g) = ψL2(reg(Y ), h). (92)

Proof. As remarked above we can apply Cor.5.1 to (reg(X), g). Therefore ψL2(reg(X), g)
exists. Now combining Theorem 2.4 with (89) we get (90) and (91). Finally (92) follows by
the invariance under homeomorphisms or under stratum preserving homotopy equivalences of
the intersection cohomology groups.

We conclude pointing out that, in the context of compact and oriented manifold with
conical singularities, ψL2(reg(X), g), defined using a conic metric g on reg(X), admits a pure
topological interpretation in terms of intersection cohomology groups of X.
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