Earthquake-prone regions of the world are usually characterized by a high number of Reinforced Concrete (RC) buildings designed before seismic building codes were enforced. As a result, the amount of existing RC buildings requiring seismic assessment and likely retrofitting is large. The use of innovative techniques for the seismic amelioration of existing RC buildings has been attracting the attention of both academic and technical communities since the second half of the previous century. Among these techniques there is the employment of passive energy dissipating devices that are mounted in series to metallic braces installed within the existing RC frames. Such energy dissipating devices can be 1) fluid-viscous, 2) viscoelastic, 3) elasto-plastic, 4) frictional or 5) based on shape-memory alloys. The large number of devices available on the market is not accompanied yet, at least within the Italian Building Code, by a mature and detailed description of the design procedure, so that the practicing engineer who would like to adopt this technique is often referred to scientific publications. With the aim to contribute to fill this gap, an energy-based methodology is proposed and applied and compared with some of the most innovative design procedures available in the scientific literature to date. The validity of each procedure is appraised on the basis of non-linear static and non-linear dynamic analysis results.

Proposal of energy-based method for the design of passive energy dissipative braces / RAHMAT RABI, Raihan. - (2020 Feb 26).

Proposal of energy-based method for the design of passive energy dissipative braces

RAHMAT RABI, RAIHAN
26/02/2020

Abstract

Earthquake-prone regions of the world are usually characterized by a high number of Reinforced Concrete (RC) buildings designed before seismic building codes were enforced. As a result, the amount of existing RC buildings requiring seismic assessment and likely retrofitting is large. The use of innovative techniques for the seismic amelioration of existing RC buildings has been attracting the attention of both academic and technical communities since the second half of the previous century. Among these techniques there is the employment of passive energy dissipating devices that are mounted in series to metallic braces installed within the existing RC frames. Such energy dissipating devices can be 1) fluid-viscous, 2) viscoelastic, 3) elasto-plastic, 4) frictional or 5) based on shape-memory alloys. The large number of devices available on the market is not accompanied yet, at least within the Italian Building Code, by a mature and detailed description of the design procedure, so that the practicing engineer who would like to adopt this technique is often referred to scientific publications. With the aim to contribute to fill this gap, an energy-based methodology is proposed and applied and compared with some of the most innovative design procedures available in the scientific literature to date. The validity of each procedure is appraised on the basis of non-linear static and non-linear dynamic analysis results.
26-feb-2020
File allegati a questo prodotto
File Dimensione Formato  
Tesi_dottorato_RahmatRabi.pdf

Open Access dal 07/02/2023

Note: All rights reserved
Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.15 MB
Formato Adobe PDF
6.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1359668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact