We introduce a multivariate hidden Markov model (HMM) for mixedtype (continuous and ordinal) variables. As some of the considered variables may not contribute to the clustering structure, we built a hidden Markov-based model such that we are able to recognize discriminative and noise dimensions. The variables are considered to be linear combinations of two independent sets of latent factors where one contains the information about the cluster structure, following an HMM, and the other one contains noise dimensions distributed as a multivariate normal (and it does not change over time). The resulting model is parsimonious, but its computational burden may be cumbersome. To overcome any computational issue, a composite likelihood approach is introduced to estimate model parameters.

COMPOSITE LIKELIHOOD INFERENCE FOR SIMULTANEOUS CLUSTERING AND DIMENSIONALITY REDUCTION OF MIXED-TYPE LONGITUDINAL DATA / Maruotti, Antonello; Ranalli, Monia; Rocci, Roberto. - (2019), pp. 325-328. (Intervento presentato al convegno CLADAG 2019 tenutosi a Cassino).

COMPOSITE LIKELIHOOD INFERENCE FOR SIMULTANEOUS CLUSTERING AND DIMENSIONALITY REDUCTION OF MIXED-TYPE LONGITUDINAL DATA

Maruotti Antonello;Ranalli Monia;Rocci Roberto
2019

Abstract

We introduce a multivariate hidden Markov model (HMM) for mixedtype (continuous and ordinal) variables. As some of the considered variables may not contribute to the clustering structure, we built a hidden Markov-based model such that we are able to recognize discriminative and noise dimensions. The variables are considered to be linear combinations of two independent sets of latent factors where one contains the information about the cluster structure, following an HMM, and the other one contains noise dimensions distributed as a multivariate normal (and it does not change over time). The resulting model is parsimonious, but its computational burden may be cumbersome. To overcome any computational issue, a composite likelihood approach is introduced to estimate model parameters.
2019
CLADAG 2019
mixed-type data; data reduction; HMM; composite likelihood; EM algorithm
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
COMPOSITE LIKELIHOOD INFERENCE FOR SIMULTANEOUS CLUSTERING AND DIMENSIONALITY REDUCTION OF MIXED-TYPE LONGITUDINAL DATA / Maruotti, Antonello; Ranalli, Monia; Rocci, Roberto. - (2019), pp. 325-328. (Intervento presentato al convegno CLADAG 2019 tenutosi a Cassino).
File allegati a questo prodotto
File Dimensione Formato  
Maruotti_Composite-likelihood-inference_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.93 MB
Formato Unknown
1.93 MB Unknown

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1347970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact