The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard analytical and numerical methods, without relying on any ansatz or assumption. The results for the binding energies and transverse amplitudes are compared with the results computed in Euclidean space. A fair agreement between the calculations is found.

Solving the three-body bound-state Bethe-Salpeter equation in Minkowski space / Ydrefors, E.; Alvarenga Nogueira, J. H.; Karmanov, V. A.; Frederico, T.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 791:(2019), pp. 276-280. [10.1016/j.physletb.2019.02.046]

Solving the three-body bound-state Bethe-Salpeter equation in Minkowski space

Alvarenga Nogueira J. H.;
2019

Abstract

The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard analytical and numerical methods, without relying on any ansatz or assumption. The results for the binding energies and transverse amplitudes are compared with the results computed in Euclidean space. A fair agreement between the calculations is found.
2019
Bethe-Salpeter equation; Light-front dynamics; Relativistic three-body bound states; Zero-range interaction
01 Pubblicazione su rivista::01a Articolo in rivista
Solving the three-body bound-state Bethe-Salpeter equation in Minkowski space / Ydrefors, E.; Alvarenga Nogueira, J. H.; Karmanov, V. A.; Frederico, T.. - In: PHYSICS LETTERS. SECTION B. - ISSN 0370-2693. - 791:(2019), pp. 276-280. [10.1016/j.physletb.2019.02.046]
File allegati a questo prodotto
File Dimensione Formato  
Ydrefors_Solving_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 270.01 kB
Formato Adobe PDF
270.01 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1342644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact